The Extreme Classification Repository: Multi-label Datasets & Code 
    Kush Bhatia  • Kunal Dahiya  • Himanshu
      Jain  • Purushottam Kar  • Anshul Mittal   •
    Yashoteja Prabhu   • Manik Varma 
     
  
  
    The objective of extreme multi-label classification (XC) is to learn feature architectures and classifiers that can automatically tag a data point with the most relevant subset of labels from an extremely large label set. This repository provides resources, including XC datasets, code for leading XC methods and metrics to evaluate the performance of XC algorithms.
  
     Citing the Repository  
     Please use the following citation if you use any of the datasets
      or results provided on this repository.
            @Misc{Bhatia16,
          author    = {Bhatia, K. and Dahiya, K. and Jain, H. and Kar, P. and Mittal, A. and Prabhu, Y. and Varma, M.},
          title     = {The extreme classification repository: Multi-label datasets and code},
          url       = {http://manikvarma.org/downloads/XC/XMLRepository.html},
          year      = {2016}
        }
         
    
    
       Datasets  
        
        Useful Tools   
        Performance Metrics
          and Evaluation Protocols   
        Code for XC Methods   
        Benchmarked
          Results   
        Appendix   
        References   
     
      
    
     The datasets below consider various XC
      problems in webpage categorization, related webpage recommendation
      and product-to-product recommendation tasks. These include
      multi-modal datasets and datasets where labels have textual
      features. The dataset file format information can be found in the
      README file available 
[here] .
      Python and Matlab scripts for reading the datasets have been
      provided 
[below] .
    
Manik
      Varma  if you would like to contribute a dataset.
    
    
      
        Number of labels : The (rounded off) number of labels
          in the dataset is appended to the dataset name to disambiguate
          various versions of datasets. Specific legacy datasets were
          renamed to ensure uniformity. The dataset previously referred
          to as DeliciousLarge was renamed to Delicious-200K and RCV1-X
          was renamed to RCV1-2K.Label features : Datasets that contain label features
          have the token "LF" prepended to their names. These are
          usually short textual descriptions of the labels.Multi-modal features : Datasets that contain
          multi-modal features have the token "MM" prepended to their
          names. These usually correspond to short textual descriptions
          and one or more images for each data point and label.Short-text datasets : Datasets with the phrase
          "Titles" in their names, such as AmazonTitles-670K, are
          short-text datasets whose data points are represented by a 3-5
          word textual description such as the name of a product or
          title of a webpage. For full-text  datasets such as
          Amazon-670K, data points are represented using a more detailed
          description. Short-text tasks abound in ranking and
          recommendation applications where data points are user queries
          or products/webpages represented using only their titles.Item-to-item datasets : Datasets with the phrase
          "SeeAlso" in their names correspond to tasks requiring related
          Wikipedia articles to be predicted for a given Wikipedia
          article. 
      Datasets with/without Label Features 
      Note that there exist pairs of datasets whose names are identical
      but for the "LF" prefix (e.g. LF-WikiSeeAlsoTitles-320K and
      WikiSeeAlsoTitles-350K)  but which contain a different number
      of labels and data points. The reason for this variation is that
      the raw dumps from which these datasets were curated often
      contained labels for which label features were unavailable or
      could not be reliably retrieved. Such labels could exist in the
      non-LF dataset but were excluded from the LF version. Such
      exclusions could also lead to
      specific data points having zero labels. Such data points were
      excluded from the dataset as well.
      A special case in this respect is that of the Wikipedia-500K and
      LF-Wikipedia-500K datasets that are identical and have the same
      (number of) labels and data points. Wikipedia articles are the
      data points and Wikipedia categories are the labels for these
      datasets. As a convention, methods that do not use label features
      could choose to report their results on the Wikipedia-500K dataset
      whereas methods that do use label features could report results on
      the LF-Wikipedia-500K dataset. For this reason, these two datasets
      have not been released separately. The LF-Wikipedia-500K dataset
      has been released (see links below). Methods that wish to work on
      the Wikipedia-500K dataset can download the LF version and
      disregard the label features.
      
Multi-modal Datasets 
      The MM-AmazonTitles-300K dataset was created by taking raw data
      dumps and extracting all data points and labels for which a short
      textual description and at least one image was available. The
      images were resized to fit within a 128 x 128-pixel region and
      padded with white pixels in a centered manner to ensure a 1:1
      aspect ratio. White padding was used since the natural background
      in most images was white. Subsequent operations such as
      tokenization, train-test split creation and reciprocal pair
      removal were done as explained below. The processed and
      unprocessed image sets are available upon request. To
      request, please download the dataset using the links given in the
      table above, inspect the README file in the download for terms of
      usage and fill out the form available 
[here] .
      Tables comparing various methods on the MM-AmazonTitles-300K
      dataset are not provided on this webpage since most multi-modal
      benchmarks are not XC methods and most XC methods work only with
      textual features and not multi-modal features. Instead, please
      refer to the publication 
[65]  for
      benchmark comparisons.
      
Legacy Datasets 
      Benchmarked results on datasets formerly popular in XC research
      have shifted to the Appendix available 
[here] .
      Some of these datasets are tiny such as the Bibtex dataset with
      159 labels. The raw sources can no longer be reliably traced for
      other datasets and only bag-of-words features are available. All
      such legacy datasets remain available using links in the dataset
      table below. 
 
     
    
      
        
          
            
               
           
          
            Dataset 
            Download 
            BoW Feature 
            Number of 
            Number of 
            Number of 
            Avg. Points  
            Avg. Labels  
            Original 
           
          
            Dimensionality 
            Labels 
            Train Points 
            Test Points 
            per Label 
            per Point 
            Source 
           
          
            
               
           
          
             Multi-modal Datasets   
           
          
            MM-AmazonTitles-300K 
             BoW Features  Raw text   
            40,000 
            303,296 
            586,781 
            260,536 
            15.73 
            8.13 
            [64]  
          
            
               
           
          
             Datasets with Label Features   
           
          
            LF-AmazonTitles-131K 
             BoW Features  Raw text   
            40,000 
            131,073 
            294,805 
            134,835 
            5.15 
            2.29 
            [28]  
          
            LF-Amazon-131K 
             BoW Features  Raw text   
            80,000 
            131,073 
            294,805 
            134,835 
            5.15 
            2.29 
            [28]  
          
            LF-WikiSeeAlsoTitles-320K 
             BoW Features  Raw text   
            40,000 
            312,330 
            693,082 
            177,515 
            4.67 
            2.11 
            - 
           
          
            LF-WikiSeeAlso-320K 
             BoW Features  Raw text   
            80,000 
            312,330 
            693,082 
            177,515 
            4.67 
            2.11 
            - 
           
          
            LF-WikiTitles-500K 
             BoW Features  Raw text   
            80,000 
            501,070 
            1,813,391 
            783,743 
            17.15 
            4.74 
            - 
           
          
            LF-Wikipedia-500K 
            BoW Features  Raw text 2,381,304 
            501,070 
            1,813,391 
            783,743 
            24.75 
            4.77 
            - 
           
          
            ORCAS-800K 
            Dataset page  - 
                  797,322 
                  7,360,881 
                  2,547,702 	
                  16.13 
                  1.75 
                  [70]  
          
            LF-AmazonTitles-1.3M 
             BoW Features  Raw text   
            128,000 
            1,305,265 
            2,248,619 
            970,237 
            38.24 
            22.20 
            [29]  + [30]  
          
            
               
           
          
             Datasets without Label Features   
           
          
            AmazonCat-13K 
             BoW Features  Raw text   
            203,882 
            13,330 
            1,186,239 
            306,782 
            448.57 
            5.04 
            [28]  
          
            AmazonCat-14K 
             BoW Features  Raw text   
            597,540 
            14,588 
            4,398,050 
            1,099,725 
            1330.1 
            3.53 
            [29]  + [30]  
          
            WikiSeeAlsoTitles-350K 
             BoW Features  Raw text   
            91,414 
            352,072 
            629,418 
            162,491 
            5.24 
            2.33 
            -  
           
          
            WikiTitles-500K 
             BoW Features  Raw text   
            185,479 
            501,070 
            1,699,722 
            722,678 
            23.62 
            4.89 
            -  
           
          
            Wikipedia-500K 
             (same as LF-Wikipedia-500K) 
            2,381,304 
            501,070 
            1,813,391 
            783,743 
            24.75 
            4.77 
            - 
           
          
            AmazonTitles-670K 
             BoW Features  Raw text   
            66,666 
            670,091 
            485,176 
            150,875 
            5.11 
            5.39 
            [28]  
          
            Amazon-670K 
             BoW Features  Raw text   
            135,909 
            670,091 
            490,449 
            153,025 
            3.99 
            5.45 
            [28]  
          
            AmazonTitles-3M 
             BoW Features  Raw text   
            165,431 
            2,812,281 
            1,712,536 
            739,665 
            31.55 
            36.18 
            [29]  + [30]  
          
            Amazon-3M 
             BoW Features  Raw text   
            337,067 
            2,812,281 
            1,717,899 
            742,507 
            31.64 
            36.17 
            [29]  + [30]  
          
            
               
           
          
             Legacy Datasets   
           
          
            Mediamill 
            BoW Features  120 
            101 
            30,993 
            12,914 
            1902.15 
            4.38 
            [19]  
          
            Bibtex 
            BoW Features  1,836 
            159 
            4,880 
            2,515 
            111.71 
            2.40 
            [20]  
          
            Delicious 
            BoW Features  500 
            983 
            12,920 
            3,185 
            311.61 
            19.03 
            [21]  
          
            RCV1-2K 
            BoW Features  47,236 
            2,456 
            623,847 
            155,962 
            1218.56 
            4.79 
            [26]  
          
            EURLex-4K 
             BoW Features  5,000 
            3,993 
            15,539 
            3,809 
            25.73 
            5.31 
            [27]  + [47]  
          
            EURLex-4.3K 
             BoW Features 200,000 
            4,271 
            45,000 
            6,000 
            60.57 
            5.07 
            [47]  + [48]   
          
            Wiki10-31K 
             BoW Features   
            101,938 
            30,938 
            14,146 
            6,616 
            8.52 
            18.64 
            [23]  
          
            Delicious-200K 
            BoW Features  782,585 
            205,443 
            196,606 
            100,095 
            72.29 
            75.54  
            [24]  
          
            WikiLSHTC-325K 
            BoW Features  1,617,899 
            325,056 
            1,778,351 
            587,084 
            17.46 
            3.19 
            [25]  
          
            
               
           
           Dataset statistics & download    
      
     
    
     The table above allows downloading precomputed
      bag-of-words features or raw text. The tokenization used to create
      the bag-of-words representation may differ across datasets (e.g.
      whitespace-separated for legacy datasets vs. WordPiece for more
      recent datasets). It is recommended that additional experiments be
      conducted for XC methods that use a novel tokenizer to isolate
      improvements attributable to better tokenization rather than the
      architecture or learning algorithm. One way to accomplish this is
      to execute older XC methods with the novel tokenizer. 
    
     For each dataset, a single split is offered.
      Splits were not created randomly but instead in a way that ensured
      every label had at least one training point. This yielded more
      realistic train/test splits than uniform sampling which could have
      dropped several infrequently occurring and hard-to-classify labels
      from the test set. For example, on the WikiLSHTC-325K dataset,
      uniformly random split creation could lose ninety thousand of the
      hardest to classify labels from the test set whereas the adopted
      sampling procedure dropped only forty thousand labels from the
      test set. 
    Note : Results computed on the
      train/test splits provided on this page are not comparable to
      results computed on splits created using uniform sampling. 
    
     For the "LF" datasets that concern related
      item prediction, additional care is required since introducing
      label features allowed "reciprocal pairs" to emerge. Specifically,
      these are pairs of items, say A and B, that are related to each
      other such that two distinct data points exist, with A appearing
      as a label for B in one data point and B appearing as a label for
      A in the other. Such pairs were removed from the ground truth in
      the test set to prevent algorithms from achieving artificially
      high scores by memorizing such pairs without learning anything
      meaningful. The recommended protocol for performing prediction
      while avoiding such reciprocal pairs using filter files provided
      with these datasets is described 
[here] .
    
       Reading and writing the datasets in the given file format  
       Preprocessing raw text using various tokenizers to generate
        data point (and label) features, including bag-of-words features
       
       Evaluating various performance measures such as precision,
        nDCG and their propensity-scored counterparts (see [here]  for details)  
     
    
     The benchmarked results below present
      comparative results of various algorithms with classification
      accuracy evaluated on several performance measures. The discussion
      below describes protocols for evaluating XC methods, especially 
      in the presence of head/tail labels
      and reciprocal pairs (see 
[here] ). 
 The precision$@k$ and nDCG$@k$ metrics are
      defined for a predicted score vector $\hat{\mathbf y} \in
      {\mathbb{R}}^{L}$ and ground truth label vector $\mathbf y \in
      \left\lbrace 0, 1 \right\rbrace^L$ as \[ \text{P}@k := \frac{1}{k}
      \sum_{l\in \text{rank}_k (\hat{\mathbf y})} \mathbf y_l \] \[
      \text{DCG}@k := \sum_{l\in {\text{rank}}_k (\hat{\mathbf y})}
      \frac{\mathbf y_l}{\log(l+1)} \] \[ \text{nDCG}@k :=
      \frac{{\text{DCG}}@k}{\sum_{l=1}^{\min(k, \|\mathbf y\|_0)}
      \frac{1}{\log(l+1)}}, \] where, $\text{rank}_k(\mathbf y)$ returns
      the $k$ largest indices of $\mathbf{y}$ ranked in descending
      order. 
    
     For datasets that contain excessively popular
      labels (often referred to as "head" labels), high P@k may be
      achieved by simply predicting head labels repeatedly irrespective
      of their relevance to the data point. To check for such trivial
      behavior, it is recommended that XC methods also be evaluated with
      respect to propensity-scored counterparts of the precision$@k$ and
      nDCG$@k$ metrics (PSP$@k$ and PSnDCG$@k$) described below. \[
      \text{PSP}@k := \frac{1}{k} \sum_{l\in \text{rank}_k (\hat{\mathbf
      y})} \frac{\mathbf y_l}{p_l} \] \[ \text{PSDCG}@k := \sum_{l\in
      {\text{rank}}_k (\hat{\mathbf y})} \frac{\mathbf
      y_l}{p_l\log(l+1)} \] \[ \text{PSnDCG}@k :=
      \frac{{\text{PSDCG}}@k}{\sum_{l=1}^{k} \frac{1}{\log(l+1)}}, \]
      where $p_l$ is the propensity score for label $l$ which helps in
      making metrics unbiased 
[31]  with respect
      to missing labels. Propensity-scored metrics place specific
      emphasis on performing well on tail labels and give feeble rewards
      for predicting popular or head labels. It is recommended that
      scripts provided 
[here]  be used to compute
      propensity-scored metrics in order to be consistent with results
      reported below. 
 As described 
[here] ,
      reciprocal pairs were removed from the ground truth in the test
      splits of the LF datasets to avoid trivial predictions from
      getting rewarded. However, these reciprocal pairs must now be
      removed from the test predictions of XC methods to avoid
      unnecessary penalization. It is recommended that filter files
      provided along with the datasets and the tools provided in the
      PyXCLib library linked 
[here] 
      be used to evaluate XC methods on LF datasets. Although reciprocal
      pairs were not removed from the train splits, a separate filter
      file is provided for the train splits enumerating the reciprocal
      pairs therein so that methods that wish to eliminate them from
      train splits may do so. Note that these filter files are distinct
      from the ground truth files and only contain lists of reciprocal
      pairs. 
 The following lists provide links to code for
      leading XC methods. The methods have been categorized based on the
      kind of classifier used (e.g. one-vs-all, trees, embeddings) for
      easy identification. Methods that learn deep representations for
      data points jointly with the classifier are included as a separate
      category.
    
      Slice (Jain et al.,
          WSDM 2019)   
         1-vs-All
        Pre-trained-dense
        C++
      Parabel (Prabhu et
          al., WWW 2018)   
         1-vs-All
        Sparse-BoW
        C++
      DiSMEC++ (Schultheis and Babbar, ECML-MLJ 2022)  
      1-vs-All
      Sparse-BoW
      C++
      DiSMEC (Babbar and Schölkopf, WSDM 2017)  
        1-vs-All
        Sparse-BoW
        Java
      PPD-Sparse (Yen et al., KDD 2017)  
        1-vs-All
        Sparse-BoW
        C++
      Label Filters (Niculescu-Mizil and Abbasnejad,
          AISTATS 2017)  
        1-vs-All
        Sparse BoW
        C
      PD-Sparse (Yen et al., ICML 2016)  
        1-vs-All
        Sparse-BoW
        C++
      ProXML
          (Babbar and Schölkopf, Machine Learning 2019 & ECML 2019)  
        1-vs-All
        Sparse-BoW
        C++
      Bonsai
          (Khandagale et al., ArXiv 2019)  
        1-vs-All
        Sparse-BoW
        C++
      SwiftXML (Prabhu
          et al., WSDM 2018)  
         Trees
        Sparse-BoW
        C++
      Probabilistic Label Trees (Jasinska et al.,
          ICML 2017)  
        Trees
        Sparse-BoW
        C++
      PfastreXML
          (Jain et al., KDD 2016)  
        Trees
        Sparse-BoW
        C++
      FastXML
          (Prabhu & Varma, KDD 2014)  
        Trees
        Sparse-BoW
        C++
      CRAFTML (Siblini et al., ICML 2018)  
        Trees
        Sparse-BoW
        Rust
      DEFRAG (Jalan and Kar, IJCAI 2019)  
        Embeddings
        Sparse-BoW
        Rust
      AnnexML (Tagami, KDD 2017)  
        Embeddings
        Sparse-BoW
        C
      Randomized embeddings for extreme learning
          (Mineiro and Karampatziakis, CoRR 2017)  
        Embeddings
        Sparse BoW
        Matlab
      SLEEC
          (Bhatia et al., NIPS 2015)  
        Embeddings
        Sparse BoW
        Matlab
      LEML (Yu et al., ICML 2014)  
        Embeddings
        Sparse BoW
        Matlab
      W-LTLS
          (Evron et al., NeurIPS 2018)  
        Embeddings
        Sparse BoW
        Python
      ExMLDS-(4,1) (Gupta et al., AAAI 2019)  
        Embeddings
        Sparse BoW
        C
      fastTextLearnTree (Jernite et al., ICML 2017)  
        Deep-learning
        Sparse BoW
        C
      XML-CNN (Liu et al., SIGIR 2017)  
        Deep-learning
        Custom
        Python
      AttentionXML (You et al., NeurIPS 2019)  
        Deep-learning
        Custom
        Python
      X-Transformer (Chang et al., KDD 2020)  
        Deep-learning
        Custom
        Python
      MACH
          (Medini et al., ICML 2019)  
        Deep-learning
        Custom
        Python
      APLC-XLNet (Ye et al., ICML 2020)  
        Deep-learning
        Custom
        Python
      DeepXML/Astec (Dahiya et al., WSDM 2021)  
        Deep-learning
        Custom
        Python
      DECAF (Mittal et al., WSDM 2021)  
        Deep-learning
        Custom
        Python
      LightXML
          (Jiang et al., AAAI 2021)  
        Deep-learning
        Custom
        Python
      PWXMC
          (Qaraei et al., TheWebConf 2021)  
        Loss-function
        Custom
        Python
      GalaXC (Saini et al., TheWebConf 2021)  
        Deep-learning
        Custom
        Python
      ECLARE (Mittal et al., TheWebConf 2021)  
        Deep-learning
        Custom
        Python
      SiameseXML (Dahiya et al., ICML 2021)  
        Deep-learning
        Custom
        Python
      ZestXML (Gupta et al., KDD 2021)  
        Zero-shot-learning
        Sparse-BoW
        C++
      MUFIN (Mittal et al., CVPR 2022)  
        Deep-learning
        Custom
        Python
      InceptionXML (Kharbanda et al., SIGIR 2023)  
      Deep-learning
      Custom
      Python
      CascadeXML (Kharbanda et al., NeurIPS 2022)  
      Deep-learning
      Custom
      Python
      NGAME (Dahiya et al., WSDM 2023)  
        Deep-learning
        Custom
        Python
      Renee (Jain et al., MLSys 2023)  
      Deep-learning
      Custom
      Python
      MatchXML (Ye et al., TKDE 2024)  
      Deep-learning
      Custom
      Python
      DEXA (Dahiya et al., KDD 2023)  
      Deep-learning
      Custom
      Python
       
    
    Please contact Manik Varma 
      if you would like us to provide a link to your code.
    
     The tables below provide benchmarked results
      for various XC methods on several datasets. Rows corresponding to
      XC methods that use deep-learnt features or label features in the
      LF datasets have been highlighted in light orange. Training times
      are reported on a single GPU except when noted otherwise for
      methods that necessarily require multiple GPUs to scale. The model
      sizes mentioned alongside XC methods are either as reported else
      on-disk sizes subject to compression. Notably, executions using
      different platforms/libraries may
      introduce variance in model sizes and affect reproducibility. The
      tables below offer columns that are sortable in
      ascending/descending order. Please click on the name of a column
      to sort the data on that attribute. 
	  
      Note 1 : Deep learning methods use diverse architectures e.g.
      CPU-only or CPU-GPU. The symbols *, †, and ‡ are used to specify
      the machine configuration used for each method (see legend below).
      AttentionXML and the X-Transformer could not be run on a single
      GPU. These methods were executed on a cluster with 8 GPUs and
      training times were scaled accordingly before reporting.Note 2 : Results for methods marked with a ♦ symbol
      were directly taken from their respective publications. In some
	  cases, this was done since publicly available implementations of
	  the method could not be scaled. In other cases, this was done since
	  a different version of the dataset was used in the publication. For
	  instance, this website does not provide raw text for legacy datasets.
	  Consequently, results on deep learning methods on legacy datasets are
	  always marked with a ♦ symbol since those methods used raw text
	  from alternate sources that resulted in different train-test splits.
      
     
    Legend: 
    
       *: 24-core Intel Xeon 2.6GHz 
       †: 24-core Intel Xeon 2.6GHz with 1 Nvidia P40 GPU 
       ‡: 24-core Intel Xeon 2.6GHz with 1 Nvidia V100 GPU 
       ♦: Results as reported in publication 
     
	
    
      
        
          LF-AmazonTitles-131K
           
            
               
           
          
            Method 
            P@1 
            P@3 
            P@5 
            N@1 
            N@3 
            N@5 
            PSP@1 
            PSP@3 
            PSP@5 
            PSN@1 
            PSN@3 
            PSN@5 
            Model size (GB) 
            Train time (hr) 
           
          
            
               
           
          
          
            AnnexML*  
            30.05 
            21.25 
            16.02 
            30.05 
            31.58 
            34.05 
            19.23 
            26.09 
            32.26 
            19.23 
            23.64 
            26.60 
            1.95 
            0.08 
           
          
            Astec‡  
            37.12 
            25.20 
            18.24 
            37.12 
            38.17 
            40.16 
            29.22 
            34.64 
            39.49 
            29.22 
            32.73 
            35.03 
            3.24 
            1.83 
           
          
            AttentionXML‡  
            32.25 
            21.70 
            15.61 
            32.25 
            32.83 
            34.42 
            23.97 
            28.60 
            32.57 
            23.97 
            26.88 
            28.75 
            2.61 
            20.73 
           
          
            Bonsai*  
            34.11 
            23.06 
            16.63 
            34.11 
            34.81 
            36.57 
            24.75 
            30.35 
            34.86 
            24.75 
            28.32 
            30.47 
            0.24 
            0.10 
           
          
            DECAF‡  
            38.40 
            25.84 
            18.65 
            38.40 
            39.43 
            41.46 
            30.85 
            36.44 
            41.42 
            30.85 
            34.69 
            37.13 
            0.81 
            2.16 
           
           DEXA‡   46.42  30.50  21.59  46.42  47.06  49.00  39.11  44.69  49.65  39.11  43.10  45.58  -  13.01   
          
            DiSMEC*  
            35.14 
            23.88 
            17.24 
            35.14 
            36.17 
            38.06 
            25.86 
            32.11 
            36.97 
            25.86 
            30.09 
            32.47 
            0.11 
            3.10 
           
          
            ECLARE‡  
            40.74 
            27.54 
            19.88 
            40.74 
            42.01 
            44.16 
            33.51 
            39.55 
            44.70 
            33.51 
            37.70 
            40.21 
            0.72 
            2.16 
           
          
            GalaXC‡  
            39.17 
            26.85 
            19.49 
            39.17 
            40.82 
            43.06 
            32.50 
            38.79 
            43.95 
            32.50 
            36.86 
            39.37 
            0.67 
            0.42 
           
          
            LightXML‡  
            35.60 
            24.15 
            17.45 
            35.60 
            36.33 
            38.17 
            25.67 
            31.66 
            36.44 
            25.67 
            29.43 
            31.68 
            2.25 
            71.40 
           
          
            MACH‡  
            33.49 
            22.71 
            16.45 
            33.49 
            34.36 
            36.16 
            24.97 
            30.23 
            34.72 
            24.97 
            28.41 
            30.54 
            2.35 
            3.30 
           
           NGAME‡   46.01  30.28  21.47  46.01  46.69  48.67  38.81  44.40  49.43  38.81  42.79  45.31  1.20  12.59   
          
            Parabel*  
            32.60 
            21.80 
            15.61 
            32.60 
            32.96 
            34.47 
            23.27 
            28.21 
            32.14 
            23.27 
            26.36 
            28.21 
            0.34 
            0.03 
           
          
            PfastreXML*  
            32.56 
            22.25 
            16.05 
            32.56 
            33.62 
            35.26 
            26.81 
            30.61 
            34.24 
            26.81 
            29.02 
            30.67 
            3.02 
            0.26 
           
           Renee  46.05  30.81  22.04  46.05  47.46  49.68  39.08  45.12  50.48  39.08  43.56  46.24  -  -   
          
            SiameseXML†  
            41.42 
            27.92 
            21.21 
            41.42 
            42.65 
            44.95 
            35.80 
            40.96 
            46.19 
            35.80 
            39.36 
            41.95 
            1.71 
            1.08 
           
          
            Slice+FastText*  
            30.43 
            20.50 
            14.84 
            30.43 
            31.07 
            32.76 
            23.08 
            27.74 
            31.89 
            23.08 
            26.11 
            28.13 
            0.39 
            0.08 
           
          
            X-Transformer‡  
            29.95 
            18.73 
            13.07 
            29.95 
            28.75 
            29.60 
            21.72 
            24.42 
            27.09 
            21.72 
            23.18 
            24.39 
            - 
            - 
           
          
            XR-Transformer‡  
            38.10 
            25.57 
            18.32 
            38.10 
            38.89 
            40.71 
            28.86 
            34.85 
            39.59 
            28.86 
            32.92 
            35.21 
            - 
            35.40 
           
          
            XT*  
            31.41 
            21.39 
            15.48 
            31.41 
            32.17 
            33.86 
            22.37 
            27.51 
            31.64 
            22.37 
            25.58 
            27.52 
            0.84 
            9.46 
           
           
            
               
           
         
      
      
        
          LF-Amazon-131K
           
            
               
           
          
            Method 
            P@1 
            P@3 
            P@5 
            N@1 
            N@3 
            N@5 
            PSP@1 
            PSP@3 
            PSP@5 
            PSN@1 
            PSN@3 
            PSN@5 
            Model size (GB) 
            Train time (hr) 
           
          
            
               
           
          
          
            AnnexML*  
            35.73 
            25.46 
            19.41 
            35.73 
            37.81 
            41.08 
            23.56 
            31.97 
            39.95 
            23.56 
            29.07 
            33.00 
            4.01 
            0.68 
           
          
            Astec‡  
            42.22 
            28.62 
            20.85 
            42.22 
            43.57 
            46.06 
            32.95 
            39.42 
            45.30 
            32.95 
            37.45 
            40.35 
            5.52 
            3.39 
           
          
            AttentionXML‡  
            42.90 
            28.96 
            20.97 
            42.90 
            44.07 
            46.44 
            32.92 
            39.51 
            45.24 
            32.92 
            37.49 
            40.33 
            5.04 
            50.17 
           
          
            Bonsai*  
            40.23 
            27.29 
            19.87 
            40.23 
            41.46 
            43.84 
            29.60 
            36.52 
            42.39 
            29.60 
            34.43 
            37.34 
            0.46 
            0.40 
           
          
            DECAF‡  
            42.94 
            28.79 
            21.00 
            42.94 
            44.25 
            46.84 
            34.52 
            41.14 
            47.33 
            34.52 
            39.35 
            42.48 
            1.86 
            1.80 
           
           DEXA‡   47.16  31.45  22.42  47.16  48.20  50.36  38.70  45.43  50.97  38.70  43.44  46.19  -  41.41   
          
            DiSMEC*  
            41.68 
            28.32 
            20.58 
            41.68 
            43.22 
            45.69 
            31.61 
            38.96 
            45.07 
            31.61 
            36.97 
            40.05 
            0.45 
            7.12 
           
           ECLARE‡   43.56  29.65  21.57  43.56  45.24  47.82  34.98  42.38  48.53  34.98  40.30  43.37  1,118.78  2.15   
          
            LightXML‡  
            41.49 
            28.32 
            20.75 
            41.49 
            42.70 
            45.23 
            30.27 
            37.71 
            44.10 
            30.27 
            35.20 
            38.28 
            2.03 
            56.03 
           
          
            MACH‡  
            34.52 
            23.39 
            17.00 
            34.52 
            35.53 
            37.51 
            25.27 
            30.71 
            35.42 
            25.27 
            29.02 
            31.33 
            4.57 
            13.91 
           
           NGAME‡   46.53  30.89  22.02  46.53  47.44  49.58  38.53  44.95  50.45  38.53  43.07  45.81  1.20  39.99   
          
            Parabel*  
            39.57 
            26.64 
            19.26 
            39.57 
            40.48 
            42.61 
            28.99 
            35.36 
            40.69 
            28.99 
            33.36 
            35.97 
            0.62 
            0.10 
           
           PINA♦   46.76  31.88  23.20  -  -  -  -  -  -  -  -  -  -  -   
          
            PfastreXML*  
            35.83 
            24.35 
            17.60 
            35.83 
            36.97 
            38.85 
            28.99 
            33.24 
            37.40 
            28.99 
            31.65 
            33.62 
            5.30 
            1.54 
           
          
            SiameseXML†  
            44.81 
            30.19 
            21.94 
            44.81 
            46.15 
            48.76 
            37.56 
            43.69 
            49.75 
            37.56 
            41.91 
            44.97 
            1.76 
            1.18 
           
           Renee  48.05  32.33  23.26  48.05  49.56  52.04  40.11  47.39  53.67  40.11  45.37  48.52  -  -   
          
            Slice+FastText*  
            32.07 
            22.21 
            16.52 
            32.07 
            33.54 
            35.98 
            23.14 
            29.08 
            34.63 
            23.14 
            27.25 
            30.06 
            0.39 
            0.11 
           
          
            XR-Transformer‡  
            45.61 
            30.85 
            22.32 
            45.61 
            47.10 
            49.65 
            34.93 
            42.83 
            49.24 
            34.93 
            40.67 
            43.91 
            - 
            38.40 
           
          
            XT*  
            34.31 
            23.27 
            16.99 
            34.31 
            35.18 
            37.26 
            24.35 
            29.81 
            34.70 
            24.35 
            27.95 
            30.34 
            0.92 
            1.38 
           
           
            
               
           
         
      
      
        
          LF-WikiSeeAlsoTitles-320K
           
            
               
           
          
            Method 
            P@1 
            P@3 
            P@5 
            N@1 
            N@3 
            N@5 
            PSP@1 
            PSP@3 
            PSP@5 
            PSN@1 
            PSN@3 
            PSN@5 
            Model size (GB) 
            Train time (hr) 
           
          
            
               
           
          
          
            AnnexML*  
            16.30 
            11.24 
            8.84 
            16.30 
            16.19 
            17.14 
            7.24 
            9.63 
            11.75 
            7.24 
            9.06 
            10.43 
            4.22 
            0.21 
           
          
            Astec‡  
            22.72 
            15.12 
            11.43 
            22.72 
            22.16 
            22.87 
            13.69 
            15.81 
            17.50 
            13.69 
            15.56 
            16.75 
            7.30 
            4.17 
           
          
            AttentionXML‡  
            17.56 
            11.34 
            8.52 
            17.56 
            16.58 
            17.07 
            9.45 
            10.63 
            11.73 
            9.45 
            10.45 
            11.24 
            6.02 
            56.12 
           
          
            Bonsai*  
            19.31 
            12.71 
            9.55 
            19.31 
            18.74 
            19.32 
            10.69 
            12.44 
            13.79 
            10.69 
            12.29 
            13.29 
            0.37 
            0.37 
           
          
            DECAF‡  
            25.14 
            16.90 
            12.86 
            25.14 
            24.99 
            25.95 
            16.73 
            18.99 
            21.01 
            16.73 
            19.18 
            20.75 
            1.76 
            11.16 
           
          
            DiSMEC*  
            19.12 
            12.93 
            9.87 
            19.12 
            18.93 
            19.71 
            10.56 
            13.01 
            14.82 
            10.56 
            12.70 
            14.02 
            0.19 
            15.56 
           
          
            ECLARE‡  
            29.35 
            19.83 
            15.05 
            29.35 
            29.21 
            30.20 
            22.01 
            24.23 
            26.27 
            22.01 
            24.46 
            26.03 
            1.67 
            13.46 
           
          
            GalaXC‡  
            27.87 
            18.75 
            14.30 
            27.87 
            26.84 
            27.60 
            19.77 
            22.25 
            24.47 
            19.77 
            21.70 
            23.16 
            1.08 
            1.08 
           
          
            MACH‡  
            18.06 
            11.91 
            8.99 
            18.06 
            17.57 
            18.17 
            9.68 
            11.28 
            12.53 
            9.68 
            11.19 
            12.14 
            2.51 
            8.23 
           
          
            Parabel*  
            17.68 
            11.48 
            8.59 
            17.68 
            16.96 
            17.44 
            9.24 
            10.65 
            11.80 
            9.24 
            10.49 
            11.32 
            0.60 
            0.07 
           
          
            PfastreXML*  
            17.10 
            11.13 
            8.35 
            17.10 
            16.80 
            17.35 
            12.15 
            12.51 
            13.26 
            12.15 
            12.81 
            13.48 
            6.77 
            0.59 
           
          
            SiameseXML†  
            31.97 
            21.43 
            16.24 
            31.97 
            31.57 
            32.59 
            26.82 
            28.42 
            30.36 
            26.82 
            28.74 
            30.27 
            2.62 
            1.90 
           
          
            Slice+FastText*  
            18.55 
            12.62 
            9.68 
            18.55 
            18.29 
            19.07 
            11.24 
            13.45 
            15.20 
            11.24 
            13.03 
            14.23 
            0.94 
            0.20 
           
          
            XT*  
            17.04 
            11.31 
            8.60 
            17.04 
            16.61 
            17.24 
            8.99 
            10.52 
            11.82 
            8.99 
            10.33 
            11.26 
            1.90 
            5.28 
           
           
            
               
           
         
      
      
        
          LF-WikiSeeAlso-320K
           
            
               
           
          
            Method 
            P@1 
            P@3 
            P@5 
            N@1 
            N@3 
            N@5 
            PSP@1 
            PSP@3 
            PSP@5 
            PSN@1 
            PSN@3 
            PSN@5 
            Model size (GB) 
            Train time (hr) 
           
          
            
               
           
          
          
            AnnexML*  
            30.79 
            20.88 
            16.47 
            30.79 
            30.02 
            31.64 
            13.48 
            17.92 
            22.21 
            13.48 
            16.52 
            19.08 
            12.13 
            2.40 
           
          
            Astec‡  
            40.07 
            26.69 
            20.36 
            40.07 
            39.36 
            40.88 
            23.41 
            28.08 
            31.92 
            23.41 
            27.48 
            30.17 
            13.46 
            7.11 
           
          
            AttentionXML‡  
            40.50 
            26.43 
            19.87 
            40.50 
            39.13 
            40.26 
            22.67 
            26.66 
            29.83 
            22.67 
            26.13 
            28.38 
            7.12 
            90.37 
           
          
            Bonsai*  
            34.86 
            23.21 
            17.66 
            34.86 
            34.09 
            35.32 
            18.19 
            22.35 
            25.66 
            18.19 
            21.62 
            23.84 
            0.84 
            1.39 
           
          
            DECAF‡  
            41.36 
            28.04 
            21.38 
            41.36 
            41.55 
            43.32 
            25.72 
            30.93 
            34.89 
            25.72 
            30.69 
            33.69 
            4.84 
            13.40 
           
           DEXA‡   47.11  30.48  22.71  47.10  46.31  47.62  31.81  35.50  38.78  31.81  38.94  78.61  -  78.61   
          
            DiSMEC*  
            34.59 
            23.58 
            18.26 
            34.59 
            34.43 
            36.11 
            18.95 
            23.92 
            27.90 
            18.95 
            23.04 
            25.76 
            1.28 
            58.79 
           
           ECLARE‡   40.58  26.86  20.14  40.48  40.05  41.23  26.04  30.09  33.01  26.04  30.06  32.32  2.83  9.40   
          
            LightXML‡  
            34.50 
            22.31 
            16.83 
            34.50 
            33.21 
            34.24 
            17.85 
            21.26 
            24.16 
            17.85 
            20.81 
            22.80 
            - 
            249.00 
           
          
            MACH‡  
            27.18 
            17.38 
            12.89 
            27.18 
            26.09 
            26.80 
            13.11 
            15.28 
            16.93 
            13.11 
            15.17 
            16.48 
            11.41 
            50.22 
           
           NGAME‡   47.65  31.56  23.68  47.65  47.50  48.99  33.83  37.79  41.03  33.83  38.36  41.01  2.51  75.39   
           PINA♦   44.54  30.11  22.92  -  -  -  -  -  -  -  -  -  -  -   
          
            Parabel*  
            33.46 
            22.03 
            16.61 
            33.46 
            32.40 
            33.34 
            17.10 
            20.73 
            23.53 
            17.10 
            20.02 
            21.88 
            1.18 
            0.33 
           
          
            PfastreXML*  
            28.79 
            18.38 
            13.60 
            28.79 
            27.69 
            28.28 
            17.12 
            18.19 
            19.43 
            17.12 
            18.23 
            19.20 
            14.02 
            4.97 
           
          
            SiameseXML†  
            42.16 
            28.14 
            21.39 
            42.16 
            41.79 
            43.36 
            29.02 
            32.68 
            36.03 
            29.02 
            32.64 
            35.17 
            2.70 
            2.33 
           
           Renee  47.86  31.91  24.05  47.86  47.93  49.63  32.02  37.07  40.90  32.02  37.52  40.60  -  -   
          
            Slice+FastText*  
            27.74 
            19.39 
            15.47 
            27.74 
            27.84 
            29.65 
            13.07 
            17.50 
            21.55 
            13.07 
            16.36 
            18.90 
            0.94 
            0.20 
           
          
            XR-Transformer‡  
            42.57 
            28.24 
            21.30 
            42.57 
            41.99 
            43.44 
            25.18 
            30.13 
            33.79 
            25.18 
            29.84 
            32.59 
            - 
            119.47 
           
          
            XT*  
            30.10 
            19.60 
            14.92 
            30.10 
            28.65 
            29.58 
            14.43 
            17.13 
            19.69 
            14.43 
            16.37 
            17.97 
            2.20 
            3.27 
           
           
            
               
           
         
      
      
        
          LF-WikiTitles-500K
           
            
               
           
          
            Method 
            P@1 
            P@3 
            P@5 
            N@1 
            N@3 
            N@5 
            PSP@1 
            PSP@3 
            PSP@5 
            PSN@1 
            PSN@3 
            PSN@5 
            Model size (GB) 
            Train time (hr) 
           
          
            
               
           
          
          
            AnnexML*  
            39.00 
            20.66 
            14.55 
            39.00 
            28.40 
            26.80 
            13.91 
            13.38 
            13.75 
            13.91 
            14.63 
            15.88 
            11.18 
            1.98 
           
          
            Astec‡  
            44.40 
            24.69 
            17.49 
            44.40 
            33.43 
            31.72 
            18.31 
            18.25 
            18.56 
            18.31 
            19.57 
            21.09 
            15.01 
            13.50 
           
          
            AttentionXML‡  
            40.90 
            21.55 
            15.05 
            40.90 
            29.38 
            27.45 
            14.80 
            13.97 
            13.88 
            14.80 
            15.24 
            16.22 
            14.01 
            133.94 
           
          
            Bonsai*  
            40.97 
            22.30 
            15.66 
            40.97 
            30.35 
            28.65 
            16.58 
            16.34 
            16.40 
            16.58 
            17.60 
            18.85 
            1.63 
            2.03 
           
          
            DECAF‡  
            44.21 
            24.64 
            17.36 
            44.21 
            33.55 
            31.92 
            19.29 
            19.82 
            19.96 
            19.29 
            21.26 
            22.95 
            4.53 
            42.26 
           
          
            DiSMEC*  
            39.42 
            21.10 
            14.85 
            39.42 
            28.87 
            27.29 
            15.88 
            15.54 
            15.89 
            15.88 
            16.76 
            18.13 
            0.68 
            48.27 
           
          
            ECLARE‡  
            44.36 
            24.29 
            16.91 
            44.36 
            33.33 
            31.46 
            21.58 
            20.39 
            19.84 
            21.58 
            22.39 
            23.61 
            4.24 
            39.34 
           
          
            MACH‡  
            37.74 
            19.11 
            13.26 
            37.74 
            26.63 
            24.94 
            13.71 
            12.14 
            12.00 
            13.71 
            13.63 
            14.54 
            4.73 
            22.46 
           
          
            Parabel*  
            40.41 
            21.98 
            15.42 
            40.41 
            29.89 
            28.15 
            15.55 
            15.32 
            15.35 
            15.55 
            16.50 
            17.66 
            2.70 
            0.42 
           
          
            PfastreXML*  
            35.71 
            19.27 
            13.64 
            35.71 
            26.45 
            25.15 
            18.23 
            15.42 
            15.08 
            18.23 
            17.34 
            18.24 
            20.41 
            3.79 
           
          
            Slice+FastText*  
            25.48 
            15.06 
            10.98 
            25.48 
            20.67 
            20.52 
            13.90 
            13.33 
            13.82 
            13.90 
            14.50 
            15.90 
            2.30 
            0.74 
           
          
            XT*  
            38.13 
            20.71 
            14.66 
            38.13 
            28.13 
            26.61 
            14.10 
            14.12 
            14.38 
            14.10 
            15.15 
            16.40 
            3.10 
            14.67 
           
           
            
               
           
         
      
      
        
          LF-AmazonTitles-1.3M
           
            
               
           
          
            Method 
            P@1 
            P@3 
            P@5 
            N@1 
            N@3 
            N@5 
            PSP@1 
            PSP@3 
            PSP@5 
            PSN@1 
            PSN@3 
            PSN@5 
            Model size (GB) 
            Train time (hr) 
           
          
            
               
           
          
          
            AnnexML*  
            47.79 
            41.65 
            36.91 
            47.79 
            44.83 
            42.93 
            15.42 
            19.67 
            21.91 
            15.42 
            18.05 
            19.36 
            14.53 
            2.48 
           
          
            Astec‡  
            48.82 
            42.62 
            38.44 
            48.82 
            46.11 
            44.80 
            21.47 
            25.41 
            27.86 
            21.47 
            24.08 
            25.66 
            26.66 
            18.54 
           
          
            AttentionXML‡  
            45.04 
            39.71 
            36.25 
            45.04 
            42.42 
            41.23 
            15.97 
            19.90 
            22.54 
            15.97 
            18.23 
            19.60 
            28.84 
            380.02 
           
          
            Bonsai*  
            47.87 
            42.19 
            38.34 
            47.87 
            45.47 
            44.35 
            18.48 
            23.06 
            25.95 
            18.48 
            21.52 
            23.33 
            9.02 
            7.89 
           
          
            DECAF‡  
            50.67 
            44.49 
            40.35 
            50.67 
            48.05 
            46.85 
            22.07 
            26.54 
            29.30 
            22.07 
            25.06 
            26.85 
            9.62 
            74.47 
           
           DEXA‡   56.63  49.05  43.90  56.60  53.81  52.37  29.12  32.69  34.86  29.12  32.02  33.86  -  103.13   
          
            ECLARE‡  
            50.14 
            44.09 
            40.00 
            50.14 
            47.75 
            46.68 
            23.43 
            27.90 
            30.56 
            23.43 
            26.67 
            28.61 
            9.15 
            70.59 
           
          
            GalaXC‡  
            49.81 
            44.23 
            40.12 
            49.81 
            47.64 
            46.47 
            25.22 
            29.12 
            31.44 
            25.22 
            27.81 
            29.36 
            2.69 
            9.55 
           
          
            MACH‡  
            35.68 
            31.22 
            28.35 
            35.68 
            33.42 
            32.27 
            9.32 
            11.65 
            13.26 
            9.32 
            10.79 
            11.65 
            7.68 
            60.39 
           
           NGAME‡   56.75  49.19  44.09  56.75  53.84  52.41  29.18  33.01  35.36  29.18  32.07  33.91  9.71  97.75   
          
            Parabel*  
            46.79 
            41.36 
            37.65 
            46.79 
            44.39 
            43.25 
            16.94 
            21.31 
            24.13 
            16.94 
            19.70 
            21.34 
            11.75 
            1.50 
           
          
            PfastreXML*  
            37.08 
            33.77 
            31.43 
            37.08 
            36.61 
            36.61 
            28.71 
            30.98 
            32.51 
            28.71 
            29.92 
            30.73 
            29.59 
            9.66 
           
          
            SiameseXML†  
            49.02 
            42.72 
            38.52 
            49.02 
            46.38 
            45.15 
            27.12 
            30.43 
            32.52 
            27.12 
            29.41 
            30.90 
            14.58 
            9.89 
           
           Renee  56.04  49.91  45.32  56.04  54.21  53.15  28.54  33.38  36.14  28.54  32.15  34.18  -  -   
          
            Slice*  
            34.80 
            30.58 
            27.71 
            34.80 
            32.72 
            31.69 
            13.96 
            17.08 
            19.14 
            13.96 
            15.83 
            16.97 
            5.98 
            0.79 
           
          
            XT*  
            40.60 
            35.74 
            32.01 
            40.60 
            38.18 
            36.68 
            13.67 
            17.11 
            19.06 
            13.67 
            15.64 
            16.65 
            7.90 
            82.18 
           
          
            XR-Transformer‡  
            50.14 
            44.07 
            39.98 
            50.14 
            47.71 
            46.59 
            20.06 
            24.85 
            27.79 
            20.06 
            23.44 
            25.41 
            - 
            132.00 
           
           
            
               
           
         
      
      
        
          WikiSeeAlsoTitles-350K
           
            
               
           
          
            Method 
            P@1 
            P@3 
            P@5 
            N@1 
            N@3 
            N@5 
            PSP@1 
            PSP@3 
            PSP@5 
            PSN@1 
            PSN@3 
            PSN@5 
            Model size (GB) 
            Train time (hr) 
           
          
            
               
           
          
          
            AnnexML*  
            14.96 
            10.20 
            8.11 
            14.96 
            14.20 
            14.76 
            5.63 
            7.04 
            8.59 
            5.63 
            6.79 
            7.76 
            3.59 
            0.20 
           
          
            Astec†  
            20.61 
            14.58 
            11.49 
            20.61 
            20.08 
            20.80 
            9.91 
            12.16 
            14.04 
            9.91 
            11.76 
            12.98 
            7.41 
            4.36 
           
          
            AttentionXML†  
            15.86 
            10.43 
            8.01 
            15.86 
            14.59 
            14.86 
            6.39 
            7.20 
            8.15 
            6.39 
            7.05 
            7.64 
            4.07 
            30.44 
           
          
            Bonsai*  
            17.95 
            12.27 
            9.56 
            17.95 
            17.13 
            17.66 
            8.16 
            9.68 
            11.07 
            8.16 
            9.49 
            10.43 
            0.25 
            0.46 
           
          
            DiSMEC*  
            16.61 
            11.57 
            9.14 
            16.61 
            16.09 
            16.72 
            7.48 
            9.19 
            10.74 
            7.48 
            8.95 
            9.99 
            0.09 
            6.62 
           
           InceptionXML♦   21.87  15.48  12.20  -  -  -  11.13  13.31  15.20  -  -  -  -  -   
          
            MACH†  
            14.79 
            9.57 
            7.13 
            14.79 
            13.83 
            14.05 
            6.45 
            7.02 
            7.54 
            6.45 
            7.20 
            7.73 
            5.22 
            7.44 
           
          
            Parabel*  
            17.24 
            11.61 
            8.92 
            17.24 
            16.31 
            16.67 
            7.56 
            8.83 
            9.96 
            7.56 
            8.68 
            9.45 
            0.43 
            0.06 
           
          
            PfastreXML*  
            15.09 
            10.49 
            8.24 
            15.09 
            14.98 
            15.59 
            9.03 
            9.69 
            10.64 
            9.03 
            9.82 
            10.52 
            5.22 
            0.51 
           
          
            SLICE+FastText*  
            18.13 
            12.87 
            10.29 
            18.13 
            17.71 
            18.52 
            8.63 
            10.78 
            12.74 
            8.63 
            10.37 
            11.63 
            0.97 
            0.22 
           
          
            XML-CNN 
            17.75 
            12.34 
            9.73 
            17.75 
            16.93 
            17.48 
            8.24 
            9.72 
            11.15 
            8.24 
            9.40 
            10.31 
            0.78 
            14.25 
           
          
            XT*  
            16.55 
            11.37 
            8.93 
            16.55 
            15.88 
            16.47 
            7.38 
            8.75 
            10.05 
            7.38 
            8.57 
            9.46 
            2.00 
            3.25 
           
           
            
               
           
         
      
      
        
          WikiTitles-500K
           
            
               
           
          
            Method 
            P@1 
            P@3 
            P@5 
            N@1 
            N@3 
            N@5 
            PSP@1 
            PSP@3 
            PSP@5 
            PSN@1 
            PSN@3 
            PSN@5 
            Model size (GB) 
            Train time (hr) 
           
          
            
               
           
          
          
            AnnexML*  
            39.56 
            20.50 
            14.32 
            39.56 
            28.28 
            26.54 
            15.44 
            13.83 
            13.79 
            15.44 
            15.49 
            16.58 
            10.70 
            1.77 
           
          
            Astec†  
            46.60 
            26.03 
            18.50 
            46.60 
            35.10 
            33.34 
            18.89 
            18.90 
            19.30 
            18.89 
            20.33 
            22.00 
            15.15 
            13.04 
           
          
            AttentionXML†  
            42.89 
            22.71 
            15.89 
            42.89 
            30.92 
            28.93 
            15.12 
            14.32 
            14.22 
            15.12 
            15.69 
            16.75 
            9.21 
            102.43 
           
          
            Bonsai*  
            42.60 
            23.08 
            16.25 
            42.60 
            31.34 
            29.58 
            17.38 
            16.85 
            16.90 
            17.38 
            18.28 
            19.62 
            1.18 
            2.94 
           
          
            DiSMEC*  
            39.89 
            21.23 
            14.96 
            39.89 
            28.97 
            27.32 
            15.89 
            15.15 
            15.43 
            15.89 
            16.52 
            17.86 
            0.35 
            23.94 
           
           InceptionXML♦   48.35  27.63  19.74  -  -  -  20.86  21.02  21.23  -  -  -  -  -   
          
            MACH†  
            33.74 
            15.62 
            10.41 
            33.74 
            22.61 
            20.80 
            11.43 
            8.98 
            8.35 
            11.43 
            10.77 
            11.28 
            10.48 
            23.65 
           
          
            Parabel*  
            42.50 
            23.04 
            16.21 
            42.50 
            31.24 
            29.45 
            16.55 
            16.12 
            16.16 
            16.55 
            17.49 
            18.77 
            2.15 
            0.34 
           
          
            PfastreXML*  
            30.99 
            18.07 
            13.09 
            30.99 
            24.54 
            23.88 
            17.87 
            15.40 
            15.15 
            17.87 
            17.38 
            18.46 
            16.85 
            3.07 
           
          
            SLICE+FastText*  
            28.07 
            16.78 
            12.28 
            28.07 
            22.97 
            22.87 
            15.10 
            14.69 
            15.33 
            15.10 
            16.02 
            17.67 
            1.50 
            0.54 
           
          
            XML-CNN†  
            43.45 
            23.24 
            16.53 
            43.45 
            31.69 
            29.95 
            15.64 
            14.74 
            14.98 
            15.64 
            16.17 
            17.45 
            1.17 
            55.21 
           
          
            XT*  
            39.44 
            21.57 
            15.31 
            39.44 
            29.17 
            27.65 
            15.23 
            15.00 
            15.25 
            15.23 
            16.23 
            17.59 
            3.30 
            12.13 
           
           
            
               
           
         
      
      
        
          AmazonTitles-670K
           
            
               
           
          
            Method 
            P@1 
            P@3 
            P@5 
            N@1 
            N@3 
            N@5 
            PSP@1 
            PSP@3 
            PSP@5 
            PSN@1 
            PSN@3 
            PSN@5 
            Model size (GB) 
            Train time (hr) 
           
          
            
               
           
          
          
            AnnexML*  
            35.31 
            30.90 
            27.83 
            35.31 
            32.76 
            31.26 
            17.94 
            20.69 
            23.30 
            17.94 
            19.57 
            20.88 
            2.99 
            0.17 
           
          
            Astec†  
            40.63 
            36.22 
            33.00 
            40.63 
            38.45 
            37.09 
            28.07 
            30.17 
            32.07 
            28.07 
            29.20 
            29.98 
            10.93 
            3.85 
           
          
            AttentionXML†  
            37.92 
            33.73 
            30.57 
            37.92 
            35.78 
            34.35 
            24.24 
            26.43 
            28.39 
            24.24 
            25.48 
            26.33 
            12.11 
            37.50 
           
          
            Bonsai*  
            38.46 
            33.91 
            30.53 
            38.46 
            36.05 
            34.48 
            23.62 
            26.19 
            28.41 
            23.62 
            25.16 
            26.21 
            0.66 
            0.53 
           
          
            DiSMEC*  
            38.12 
            34.03 
            31.15 
            38.12 
            36.07 
            34.88 
            22.26 
            25.46 
            28.67 
            22.26 
            24.30 
            26.00 
            0.29 
            11.74 
           
           InceptionXML♦   42.45  38.04  34.68  -  -  -  28.70  31.48  33.83  -  -  -  -  -   
           LightXML‡   43.10  38.70  35.50  -  -  -  -  -  -  -  -  -  -  -   
          
            MACH†  
            34.92 
            31.18 
            28.56 
            34.92 
            33.07 
            31.97 
            20.56 
            23.14 
            25.79 
            20.56 
            22.18 
            23.53 
            3.84 
            6.41 
           
          
            Parabel*  
            38.00 
            33.54 
            30.10 
            38.00 
            35.62 
            33.98 
            23.10 
            25.57 
            27.61 
            23.10 
            24.55 
            25.48 
            1.06 
            0.09 
           
          
            PfastreXML*  
            32.88 
            30.54 
            28.80 
            32.88 
            32.20 
            31.85 
            26.61 
            27.79 
            29.22 
            26.61 
            27.10 
            27.59 
            5.32 
            0.99 
           
           Renee  45.20  40.24  36.61  45.20  42.77  41.27  28.98  32.66  35.83  28.98  31.38  33.07  -  -   
          
            SLICE+FastText*  
            33.85 
            30.07 
            26.97 
            33.85 
            31.97 
            30.56 
            21.91 
            24.15 
            25.81 
            21.91 
            23.26 
            24.03 
            2.01 
            0.22 
           
          
            XML-CNN†  
            35.02 
            31.37 
            28.45 
            35.02 
            33.24 
            31.94 
            21.99 
            24.93 
            26.84 
            21.99 
            23.83 
            24.67 
            1.36 
            23.52 
           
           XR-Transformers‡   41.94  37.44  34.19  41.89  39.67  38.32  25.34  28.86  32.14  25.34  27.58  29.30  -  -   
          
            XT*  
            36.57 
            32.73 
            29.79 
            36.57 
            34.64 
            33.35 
            22.11 
            24.81 
            27.18 
            22.11 
            23.73 
            24.87 
            4.00 
            4.65 
           
           
            
               
           
         
      
      
        
          AmazonTitles-3M
           
            
               
           
          
            Method 
            P@1 
            P@3 
            P@5 
            N@1 
            N@3 
            N@5 
            PSP@1 
            PSP@3 
            PSP@5 
            PSN@1 
            PSN@3 
            PSN@5 
            Model size (GB) 
            Train time (hr) 
           
          
            
               
           
          
          
            AnnexML*  
            48.37 
            44.68 
            42.24 
            48.37 
            45.93 
            44.43 
            11.47 
            13.84 
            15.72 
            11.47 
            13.02 
            14.15 
            10.23 
            1.68 
           
          
            Astec†  
            48.74 
            45.70 
            43.31 
            48.74 
            46.96 
            45.67 
            16.10 
            18.89 
            20.94 
            16.10 
            18.00 
            19.33 
            40.60 
            13.04 
           
          
            AttentionXML†  
            46.00 
            42.81 
            40.59 
            46.00 
            43.94 
            42.61 
            12.81 
            15.03 
            16.71 
            12.80 
            14.23 
            15.25 
            44.40 
            273.10 
           
          
            Bonsai*  
            46.89 
            44.38 
            42.30 
            46.89 
            45.46 
            44.35 
            13.78 
            16.66 
            18.75 
            13.78 
            15.75 
            17.10 
            9.53 
            9.90 
           
          
            MACH†  
            37.10 
            33.57 
            31.33 
            37.10 
            34.67 
            33.17 
            7.51 
            8.61 
            9.46 
            7.51 
            8.23 
            8.76 
            9.77 
            40.48 
           
          
            Parabel*  
            46.42 
            43.81 
            41.71 
            46.42 
            44.86 
            43.70 
            12.94 
            15.58 
            17.55 
            12.94 
            14.70 
            15.94 
            13.20 
            1.54 
           
          
            PfastreXML*  
            31.16 
            31.35 
            31.10 
            31.16 
            31.78 
            32.08 
            22.37 
            24.59 
            26.16 
            22.37 
            23.72 
            24.65 
            22.97 
            10.47 
           
           Renee  51.81  48.84  46.54  51.81  50.08  48.86  14.49  17.43  19.66  14.49  16.50  17.95  -  -   
          
            SLICE+FastText*  
            35.39 
            33.33 
            31.74 
            35.39 
            34.12 
            33.21 
            11.32 
            13.37 
            14.94 
            11.32 
            12.65 
            13.61 
            12.22 
            0.64 
           
           XR-Transformer‡   50.50  47.41  45.00  50.50  48.79  47.57  15.81  19.03  21.34  15.81  18.14  19.75  -  -   
          
            XT*  
            27.99 
            25.24 
            23.57 
            27.99 
            25.98 
            24.78 
            4.45 
            5.06 
            5.57 
            4.45 
            4.78 
            5.03 
            16.00 
            15.80 
           
           
            
               
           
         
      
      
        
          LF-Wikipedia-500K /
            Wikipedia-500K
           
            
               
           
          
            Method 
            P@1 
            P@3 
            P@5 
            N@1 
            N@3 
            N@5 
            PSP@1 
            PSP@3 
            PSP@5 
            PSN@1 
            PSN@3 
            PSN@5 
            Model size (GB) 
            Train time (hr) 
           
          
            
               
           
          
          
            AnnexML*  
            64.64 
            43.20 
            32.77 
            64.64 
            54.54 
            52.42 
            26.88 
            30.24 
            32.79 
            26.88 
            30.71 
            33.33 
            48.32 
            15.50 
           
          
            APLC-XLNet♦  
            72.83 
            50.50 
            38.55 
            72.83 
            62.06 
            59.27 
            30.03 
            35.25 
            38.27 
            30.03 
            35.01 
            37.86 
            1.40 
            - 
           
          
            Astec†  
            73.02 
            52.02 
            40.53 
            73.02 
            64.10 
            62.32 
            30.69 
            36.48 
            40.38 
            30.69 
            36.33 
            39.84 
            28.06 
            20.35 
           
          
            AttentionXML†  
            82.73 
            63.75 
            50.41 
            82.73 
            76.56 
            74.86 
            34.00 
            44.32 
            50.15 
            34.00 
            42.99 
            47.69 
            9.30 
            110.60 
           
          
            Bonsai*  
            69.20 
            49.80 
            38.80 
            - 
            - 
            - 
            - 
            - 
            - 
            - 
            - 
            - 
            - 
            - 
           
           CascadeXML♦   81.13  62.43  49.12  -  -  -  32.12  43.15  49.37  -  -   
           DEXA‡   84.92  65.50  50.51  84.90  79.18  76.80  42.59  53.93  58.33  42.59  52.92  57.44  57.51   
          
            DiSMEC*  
            70.20 
            50.60 
            39.70 
            70.20 
            42.10 
            40.50 
            31.20 
            33.40 
            37.00 
            31.20 
            33.70 
            37.10 
            - 
            - 
           
           ECLARE‡   68.04  46.44  35.74  68.04  58.15  56.37  31.02  35.39  38.29  31.02  35.66  34.50  7.40  86.57   
          
            LightXML‡  
            81.59 
            61.78 
            47.64 
            81.59 
            74.73 
            72.23 
            31.99 
            42.00 
            46.53 
            31.99 
            40.99 
            45.18 
            - 
            185.56 
             
           MACH‡   52.78  32.39  23.75  52.78  42.05  39.70  17.65  18.06  18.66  17.64  19.18  45.18  4.50  31.20   
           MatchXML♦   80.66  60.43  47.09  80.66  73.28  71.20  35.87  43.12  47.50  35.87  43.00  47.18  61  11.10   
           NGAME‡   84.01  64.69  49.97  84.01  78.25  75.97  41.25  52.57  57.04  41.25  51.58  56.11  3.88  54.88   
           PINA♦   82.83  63.14  50.11  -  -  -  -  -  -  -  -  -  -  -   
          
          Parabel*  
          68.70 
          49.57 
          38.64 
          68.70 
          60.51 
          58.62 
          26.88 
          31.96 
          35.26 
          26.88 
          31.73 
          34.61 
          5.65 
          2.72 
         
        
          PfastreXML*  
          59.50 
          40.20 
          30.70 
          59.50 
          30.10 
          28.70 
          29.20 
          27.60 
          27.70 
          29.20 
          28.70 
          28.30 
          - 
          63.59 
         
        
          ProXML*  
          68.80 
          48.90 
          37.90 
          68.80 
          39.10 
          38.00 
          33.10 
          35.00 
          39.40 
          33.10 
          35.20 
          39.00 
          - 
          - 
           
          
            SiameseXML†  
            67.26 
            44.82 
            33.73 
            67.26 
            56.64 
            54.29 
            33.95 
            35.46 
            37.07 
            33.95 
            36.58 
            38.93 
            5.73 
            7.31 
           
           Renee  84.95  66.25  51.68  84.95  79.79  77.83  39.89  51.77  56.70  39.89  50.73  55.57  -  -   
          
            X-Transformer♦  
            76.95 
            58.42 
            46.14 
            - 
            - 
            - 
            - 
            - 
            - 
            - 
            - 
            - 
            - 
            - 
           
          
            XML-CNN♦  
            59.85 
            39.28 
            29.81 
            59.85 
            48.67 
            46.12 
            - 
            - 
            - 
            - 
            - 
            - 
            - 
            117.23 
           
          
            XR-Transformer‡  
            81.62 
            61.38 
            47.85 
            81.62 
            74.46 
            72.43 
            33.58 
            42.97 
            47.81 
            33.58 
            42.21 
            46.61 
            - 
            318.90 
           
          
            XT*  
            64.48 
            45.84 
            35.46 
            - 
            - 
            - 
            - 
            - 
            - 
            - 
            - 
            - 
            5.50 
            20.88 
           
        
           
            
               
           
         
      
      
        
          Amazon-670K
           
            
               
           
          
            Method 
            P@1 
            P@3 
            P@5 
            N@1 
            N@3 
            N@5 
            PSP@1 
            PSP@3 
            PSP@5 
            PSN@1 
            PSN@3 
            PSN@5 
            Model size (GB) 
            Train time (hr) 
           
          
            
               
           
          
          
            AnnexML*  
            42.39 
            36.89 
            32.98 
            42.39 
            39.07 
            37.04 
            21.56 
            24.78 
            27.66 
            21.56 
            23.38 
            24.76 
            50.00 
            1.56 
           
          
            APLC-XLNet♦  
            43.46 
            38.83 
            35.32 
            43.46 
            41.01 
            39.38 
            26.12 
            29.66 
            32.78 
            26.12 
            28.20 
            29.68 
            1.1 
            - 
           
          
            Astec†  
            47.77 
            42.79 
            39.10 
            47.77 
            45.28 
            43.74 
            32.13 
            35.14 
            37.82 
            32.13 
            33.80 
            35.01 
            18.79 
            7.32 
           
          
            AttentionXML♦  
            47.58 
            42.61 
            38.92 
            47.58 
            45.07 
            43.50 
            30.29 
            33.85 
            37.13 
            - 
            - 
            - 
            16.56 
            78.30 
           
          
            Bonsai*  
            45.58 
            40.39 
            36.60 
            45.58 
            42.79 
            41.05 
            27.08 
            30.79 
            34.11 
            - 
            - 
            - 
            - 
            - 
           
           CascadeXML♦   52.15  46.54  42.44  -  -  -  30.77  35.78  40.52  -  -  -  -  -   
          
            DiSMEC*  
            44.70 
            39.70 
            36.10 
            44.70 
            42.10 
            40.50 
            27.80 
            30.60 
            34.20 
            27.80 
            28.80 
            30.70 
            3.75 
            56.02 
           
          
            FastXML*  
            36.99 
            33.28 
            30.53 
            36.99 
            35.11 
            33.86 
            19.37 
            23.26 
            26.85 
            19.37 
            22.25 
            24.69 
            - 
            - 
           
          
            LEML*  
            8.13 
            6.83 
            6.03 
            8.13 
            7.30 
            6.85 
            2.07 
            2.26 
            2.47 
            2.07 
            2.21 
            2.35 
            - 
            - 
           
          
            LPSR-NB*  
            28.65 
            24.88 
            22.37 
            28.65 
            26.40 
            25.03 
            16.68 
            18.07 
            19.43 
            16.68 
            17.70 
            18.63 
            - 
            - 
           
          
            LightXML♦  
            49.10 
            43.83 
            39.85 
            - 
            - 
            - 
            - 
            - 
            - 
            - 
            - 
            - 
            4.59 
            86.25 
           
           MatchXML♦   51.64  46.17  42.05  51.64  48.81  47.04  30.30  35.28  39.78  30.30  33.46  35.87  18  3.30   
          
            PPD-Sparse*  
            45.32 
            40.37 
            36.92 
            - 
            - 
            - 
            26.64 
            30.65 
            34.65 
            - 
            - 
            - 
            - 
            - 
           
          
            Parabel*  
            44.89 
            39.80 
            36.00 
            44.89 
            42.14 
            40.36 
            25.43 
            29.43 
            32.85 
            25.43 
            28.38 
            30.71 
            2.41 
            0.41 
           
          
            PfastreXML*  
            39.46 
            35.81 
            33.05 
            39.46 
            37.78 
            36.69 
            29.30 
            30.80 
            32.43 
            29.30 
            30.40 
            31.49 
            - 
            - 
           
          
            ProXML*  
            43.50 
            38.70 
            35.30 
            43.50 
            41.10 
            39.70 
            30.80 
            32.80 
            35.10 
            30.80 
            31.70 
            32.70 
            - 
            - 
           
           Renee  54.23  48.22  43.83  54.23  51.23  49.41  34.16  39.14  43.39  34.16  37.48  39.83  -  -   
          
            SLEEC*  
            35.05 
            31.25 
            28.56 
            34.77 
            32.74 
            31.53 
            20.62 
            23.32 
            25.98 
            20.62 
            22.63 
            24.43 
            - 
            - 
           
          
            SLICE+FastText*  
            33.15 
            29.76 
            26.93 
            33.15 
            31.51 
            30.27 
            20.20 
            22.69 
            24.70 
            20.20 
            21.71 
            22.72 
            2.01 
            0.21 
           
          
            XML-CNN♦  
            35.39 
            31.93 
            29.32 
            35.39 
            33.74 
            32.64 
            28.67 
            33.27 
            36.51 
            - 
            - 
            - 
            - 
            52.23 
           
           XR-Transformers‡   50.13  44.60  40.69  50.13  47.28  45.60  29.90  34.35  38.63  29.90  32.75  35.03  -  -   
          
            XT*  
            42.50 
            37.87 
            34.41 
            42.50 
            40.01 
            38.43 
            24.82 
            28.20 
            31.24 
            24.82 
            26.82 
            28.29 
            4.20 
            8.22 
           
           
            
               
           
         
      
      
        
          Amazon-3M
           
            
               
           
          
            Method 
            P@1 
            P@3 
            P@5 
            N@1 
            N@3 
            N@5 
            PSP@1 
            PSP@3 
            PSP@5 
            PSN@1 
            PSN@3 
            PSN@5 
            Model size (GB) 
            Train time (hr) 
           
          
            
               
           
          
          
            AnnexML*  
            49.30 
            45.55 
            43.11 
            49.30 
            46.79 
            45.27 
            11.69 
            14.07 
            15.98 
            - 
            - 
            - 
            - 
            - 
           
          
            AttentionXML†  
            50.86 
            48.04 
            45.83 
            50.86 
            49.16 
            47.94 
            15.52 
            18.45 
            20.60 
            - 
            - 
            - 
            - 
            - 
           
          
            Bonsai*  
            48.45 
            45.65 
            43.49 
            48.45 
            46.78 
            45.59 
            13.79 
            16.71 
            18.87 
            - 
            - 
            - 
            - 
            - 
           
           CascadeXML♦   53.91  51.24  49.52  -  -  -  -  -  -  -  -  -  -  -   
          
            DiSMEC*  
            47.34 
            44.96 
            42.80 
            47.36 
            - 
            - 
            - 
            - 
            - 
            - 
            - 
            - 
            - 
            - 
           
          
            FastXML*  
            44.24 
            40.83 
            38.59 
            44.24 
            41.92 
            40.47 
            9.77 
            11.69 
            13.25 
            9.77 
            11.20 
            12.29 
            - 
            - 
           
           MatchXML♦   55.88  52.39  49.80  55.88  53.90  52.58  17.00  20.55  23.16  17.00  19.56  21.38  113  8.30   
          
            Parabel*  
            47.48 
            44.65 
            42.53 
            47.48 
            45.73 
            44.53 
            12.82 
            15.61 
            17.73 
            12.82 
            14.89 
            16.38 
            - 
            - 
           
          
            PfastreXML*  
            43.83 
            41.81 
            40.09 
            43.83 
            42.68 
            41.75 
            21.38 
            23.22 
            24.52 
            21.38 
            22.75 
            23.68 
            - 
            - 
           
           Renee  54.84  52.08  49.77  54.84  53.31  52.13  15.74  19.06  21.54  15.74  18.02  19.64  -  -   
           XR-Transformers‡   53.67  50.29  47.74  53.67  51.74  50.42  16.54  19.94  22.39  16.54  18.99  20.71  -  -   
           
            
               
           
         
      
      
        
          AmazonCat-13K
           
            
               
           
          
            Method 
            P@1 
            P@3 
            P@5 
            N@1 
            N@3 
            N@5 
            PSP@1 
            PSP@3 
            PSP@5 
            PSN@1 
            PSN@3 
            PSN@5 
            Model size (GB) 
            Train time (hr) 
           
          
            
               
           
          
          
            AnnexML*  
            93.54 
            78.37 
            63.30 
            93.54 
            87.29 
            85.10 
            49.04 
            61.13 
            69.64 
            49.04 
            58.83 
            65.47 
            18.61 
            3.45 
           
          
            APLC-XLNet♦  
            94.56 
            79.82 
            64.61 
            94.56 
            88.74 
            86.66 
            52.22 
            65.08 
            71.40 
            52.22 
            62.57 
            67.92 
            0.50 
            - 
           
          
            AttentionXML♦  
            95.92 
            82.41 
            67.31 
            95.92 
            91.17 
            89.48 
            53.76 
            68.72 
            76.38 
            - 
            - 
            - 
            - 
            - 
           
          
            Bonsai*  
            92.98 
            79.13 
            64.46 
            92.98 
            87.68 
            85.92 
            51.30 
            64.60 
            72.48 
            - 
            - 
            - 
            0.55 
            1.26 
           
           CascadeXML♦   96.71  84.07  68.69  -  -  -  51.39  66.81  77.58  -  -  -  -  -   
          
            DiSMEC*  
            93.40 
            79.10 
            64.10 
            93.40 
            87.70 
            85.80 
            59.10 
            67.10 
            71.20 
            59.10 
            65.20 
            68.80 
            - 
            - 
           
          
            FastXML*  
            93.11 
            78.20 
            63.41 
            93.11 
            87.07 
            85.16 
            48.31 
            60.26 
            69.30 
            48.31 
            56.90 
            62.75 
            - 
            - 
           
          
            LightXML♦  
            96.77 
            84.02 
            68.70 
            - 
            - 
            - 
            - 
            - 
            - 
            - 
            - 
            - 
            - 
            - 
           
           MatchXML♦   96.83  83.83  68.20  96.83  92.59  90.62  48.02  64.26  75.65  48.02  60.85  69.30  2.2  6.60   
          
            PD-Sparse*  
            90.60 
            75.14 
            60.69 
            90.60 
            84.00 
            82.05 
            49.58 
            61.63 
            68.23 
            49.58 
            58.28 
            62.68 
            - 
            - 
           
          
            Parabel*  
            93.03 
            79.16 
            64.52 
            93.03 
            87.72 
            86.00 
            50.93 
            64.00 
            72.08 
            50.93 
            60.37 
            65.68 
            0.62 
            0.63 
           
          
            PfastreXML*  
            91.75 
            77.97 
            63.68 
            91.75 
            86.48 
            84.96 
            69.52 
            73.22 
            75.48 
            69.52 
            72.21 
            73.67 
            19.02 
            5.69 
           
          
            SLEEC*  
            90.53 
            76.33 
            61.52 
            90.53 
            84.96 
            82.77 
            46.75 
            58.46 
            65.96 
            46.75 
            55.19 
            60.08 
            - 
            - 
           
          
            XML-CNN♦  
            93.26 
            77.06 
            61.40 
            93.26 
            86.20 
            83.43 
            52.42 
            62.83 
            67.10 
            - 
            - 
            - 
            - 
            - 
           
          
            XT*  
            92.59 
            78.24 
            63.58 
            92.59 
            86.90 
            85.03 
            49.61 
            62.22 
            70.24 
            49.61 
            59.71 
            66.04 
            0.46 
            7.14 
           
          
            XTransformer♦  
            96.70 
            83.85 
            68.58 
            - 
            - 
            - 
            - 
            - 
            - 
            - 
            - 
            - 
            - 
            - 
           
           
            
               
           
         
      
     
    
    
    
    
    
        
      [01]  K. Bhatia, H. Jain, P. Kar, M.
        Varma, and P. Jain, Sparse
          Local Embeddings for Extreme Multi-label Classification ,
        in NeurIPS  2015. [02]  R. Agrawal, A. Gupta, Y. Prabhu
        and M. Varma, Multi-Label
          Learning with Millions of Labels: Recommending Advertiser Bid
          Phrases for Web Pages , in WWW  2013. [03]  Y. Prabhu and M. Varma, FastXML: A Fast, Accurate and
          Stable Tree-classifier for eXtreme Multi-label Learning ,
        in KDD  2014. [04]  J. Weston, A. Makadia, and H. Yee,
        Label
          Partitioning For Sublinear Ranking , in ICML 
        2013. [05]  H. Yu, P. Jain, P. Kar, and I.
        Dhillon, Large-scale
          Multi-label Learning with Missing Labels , in ICML 
        2014. [06]  D. Hsu, S. Kakade, J. Langford, and
        T. Zhang, Multi-Label
          Prediction via Compressed Sensing , in NeurIPS 
        2009. [07]  F. Tai, and H. Lin,  Multi-label Classification with Principle
          Label Space Transformation  , in  Neural Computation, 2012.
      [08]  W. Bi, and J. Kwok, Efficient Multi-label Classification with Many
          Labels  , in  ICML,  2013. [09]  Y. Chen, and H. Lin, Feature-aware Label Space Dimension Reduction
          for Multi-label Classification  , in NeurIPS, 
        2012. [10]  C. Ferng, and H. Lin, Multi-label Classification with
          Error-correcting Codes , in  ACML,  2011. [11]  J. Weston, S. Bengio, and N.
        Usunier,  WSABIE: Scaling Up To Large Vocabulary Image
          Annotation  , in  IJCAI,  2011. [12]  S. Ji, L. Tang, S. Yu, and J. Ye,  Extracting Shared Subspaces for Multi-label
          Classification  , in  KDD,  2008. [13]  Z. Lin, G. Ding, M. Hu, and J. Wang,
         Multi-label Classification via Feature-aware
          Implicit Label Space Encoding  , in  ICML,  2014.
      [14]  P. Mineiro, and N.
        Karampatziakis, Fast Label Embeddings via Randomized Linear
          Algebra ,  Preprint,  2015. [15]  N. Karampatziakis, and P.
        Mineiro, Scalable Multilabel Prediction via Randomized
          Methods ,  Preprint,  2015. [16]  K. Balasubramanian, and
        G. Lebanon, The Landmark Selection Method for Multiple
          Output Prediction ,  Preprint,  2012. [17]  M. Cisse, N. Usunier, T. Artieres,
        and P. Gallinari, Robust Bloom Filters for Large Multilabel
          Classification Tasks  , in  NIPS,  2013. [18]  B. Hariharan, S. Vishwanathan,
        and M. Varma, Efficient max-margin multi-label
          classification with applications to zero-shot learning , in
         Machine Learning Journal,  2012. [19]  C. Snoek, M. Worring, J. van
        Gemert, J.-M. Geusebroek, and A. Smeulders, The challenge problem for automated detection
          of 101 semantic concepts in multimedia , in  ACM
          Multimedia,  2006. [20]  I. Katakis, G. Tsoumakas, and I.
        Vlahavas, Multilabel text classification for automated
          tag suggestion , in  ECML/PKDD Discovery Challenge, 
        2008. [21]  G. Tsoumakas, I. Katakis, and
        I. Vlahavas, Effective and efficient multilabel
          classification in domains with large number of labels , in
         ECML/PKDD 2008 Workshop on Mining Multidimensional Data ,
        2008. [22]  J. Leskovec and A. Krevl, SNAP
          Datasets: Stanford large network dataset collection , 2014.
      [23]  A. Zubiaga, Enhancing navigation on wikipedia with social
          tags , Preprint , 2009. [24]  R. Wetzker, C. Zimmermann, and C.
        Bauckhage, Analyzing social bookmarking systems: A
          del.icio.us cookbook , in  Mining Social Data (MSoDa)
          Workshop Proceedings, ECAI , 2008. [25]  I. Partalas, A Kosmopoulos, N
        Baskiotis, T Artieres, G Paliouras, E Gaussier, I
        Androutsopoulos, M.-R. Amini and P Galinari, LSHTC:
          A Benchmark for Large-Scale Text Classification , 
          Preprint  , 2015 [26]  D. D. Lewis, Y. Yang, T. Rose, and F.
        Li, RCV1: A New Benchmark Collection for Text
          Categorization Research  in  JMLR , 2004. [27]  E. L. Mencia, and J. Furnkranz, Efficient pairwise multilabel classification
          for large-scale problems in the legal domain  in 
          ECML/PKDD , 2008. [28]  J. McAuley, and J. Leskovec,  Hidden factors and hidden topics:
          understanding rating dimensions with review text   in 
          Proceedings of the 7th ACM conference on Recommender systems
          ACM , 2013. [29]  J. McAuley, C. Targett, Q. Shi,
        and A. v. d. Hengel,  Image-based Recommendations on Styles and
          Substitutes  in  International ACM SIGIR Conference on
          Research and Development in Information Retrieval , 2015.
      [30]  J. McAuley, R. Pandey, and J.
        Leskovec,  Inferring networks of substitutable and
          complementary products  in  KDD , 2015. [31]  H. Jain, Y. Prabhu, and M. Varma,  Extreme
          Multi-label Loss Functions for Recommendation, Tagging,
          Ranking & Other Missing Label Applications  in 
          KDD , 2016. [32]  R. Babbar, and B. Schölkopf,  DiSMEC - Distributed Sparse Machines for
          Extreme Multi-label Classification  in  WSDM ,
        2017. [33]  I. E. H. Yen, X. Huang, K. Zhong, P.
        Ravikumar and I. S. Dhillon,  PD-Sparse: A Primal and Dual Sparse Approach
          to Extreme Multiclass and Multilabel Classification  in 
          ICML , 2016. [34]  I. E. H. Yen, X. Huang, W. Dai, P.
        Ravikumar I. S. Dhillon and E.-P. Xing,  PPDSparse: A Parallel Primal-Dual Sparse
          Method for Extreme Classification  in  KDD , 2017.
      [35]  K. Jasinska, K. Dembczynski, R.
        Busa-Fekete, K. Pfannschmidt, T. Klerx and E. Hullermeier,  Extreme F-Measure Maximization using Sparse
          Probability Estimates  in  ICML , 2017. [36]  J. Liu, W-C. Chang, Y. Wu and Y.
        Yang,  Deep Learning for Extreme Multi-label Text
          Classification  in  SIGIR , 2017. [37]  Y. Jernite, A. Choromanska, D.
        Sontag, Simultaneous Learning of Trees and
          Representations for Extreme Classification and Density
          Estimation  in  ICML , 2017. [38]  Y. Prabhu, A. Kag, S. Harsola, R.
        Agrawal and M. Varma,  Parabel: Partitioned Label Trees for Extreme
          Classification with Application to Dynamic Search Advertising 
        in  WWW , 2018. [39]  I. Evron, E. Moroshko and K.
        Crammer,  Efficient Loss-Based Decoding on Graphs for
          Extreme Classification  in  NeurIPS , 2018. [40]  A. Niculescu-Mizil and E.
        Abbasnejad,  Label Filters for Large Scale Multilabel
          Classification  in  AISTATS , 2017. [41]  H. Jain, V. Balasubramanian, B.
        Chunduri and M. Varma, Slice:
          Scalable linear extreme classifiers trained on 100 million
          labels for related searches , in  WSDM  2019. [42]  A. Jalan, P. Kar, Accelerating
          Extreme Classification via Adaptive Feature Agglomeration ,
        in  IJCAI  2019. [43]  R. Babbar, and B. Schölkopf,  Data Scarcity, Robustness and Extreme
          Multi-label Classification  in  Machine Learning
          Journal and European Conference on Machine Learning ,
        2019. [44]  S. Khandagale, H. Xiao and R.
        Babbar, Bonsai -
          Diverse and Shallow Trees for Extreme Multi-label
          Classification , in  ArXiv  2019. [45]  W. Siblini, F. Meyer and P.
        Kuntz, CRAFTML,
          an Efficient Clustering-based Random Forest for Extreme
          Multi-label Learning , in  ICML  2018. [46]  V. Gupta, R. Wadbude, N. Natarajan,
        H. Karnick, P. Jain and P. Rai, Distributional
          Semantics meets Multi-Label Learning , in  AAAI 
        2019. [47]  I. Chalkidis, E. Fergadiotis,
        P. Malakasiotis, N. Aletras and I. Androutsopoulos, Extreme
          Multi-Label Legal Text Classification: A Case Study in EU
          Legislation , in  Natural Legal Language Processing
          Workshop  2019. [47b]  I. Chalkidis, E. Fergadiotis,
        P. Malakasiotis, N. Aletras and I. Androutsopoulos, EURLEX57K
          Dataset . [48]  I. Chalkidis, E. Fergadiotis,
        P. Malakasiotis, and I. Androutsopoulos, Large-Scale
          Multi-Label Text Classification on EU Legislation , in 
          ACL  2019. [49]  G. Tsoumakas, E.
        Spyromitros-Xioufis, J. Vilcek and I. Vlahavas, Mulan: A Java
          Library for Multi-Label Learning , in  JMLR  2011.
      [50]  A. Jalan and P. Kar, Accelerating Extreme
          Classification via Adaptive Feature Agglomeration , in IJCAI 
        2019. [51]  R. You, S. Dai, Z. Zhang, H.
        Mamitsuka, and S. Zhu, AttentionXML: Extreme
          Multi-Label Text Classification with Multi-Label Attention
          Based Recurrent Neural Network , in  NeurIPS 
        2019. [52]  T. K. R. Medini, Q. Huang, Y.
        Wang, V. Mohan, and A. Shrivastava, Extreme
          Classification in Log Memory using Count-Min Sketch: A Case
          Study of Amazon Search with 50M Products , in  NeurIPS 
        2019. [53]  W-C. Chang, H.-F. Yu, K. Zhong, Y.
        Yang, and I. Dhillon, Taming Pretrained
          Transformers for Extreme Multi-label Text Classification ,
        in  KDD  2020. [54]  T. Jiang, D. Wang, L. Sun, H. Yang,
        Z. Zhao, F. Zhuang, LightXML:
          Transformer with Dynamic Negative Sampling for
          High-Performance Extreme Multi-label Text Classification ,
        in  AAAI  2021. [55]  K. Dahiya, D. Saini, A. Mittal, A.
        Shaw, K. Dave, A. Soni, H. Jain, S. Agarwal and M. Varma, DeepXML: A
          deep extreme multi-Label learning framework applied to short
          text documents , in  WSDM  2021. [56]  A. Mittal, K. Dahiya, S. Agrawal,
        D. Saini, S. Agarwal, P. Kar and M. Varma, DECAF:
          Deep extreme classification with label features , in 
          WSDM  2021. [57]  A. Mittal, N. Sachdeva, S.
        Agrawal, S. Agarwal, P. Kar and M. Varma, ECLARE:
          Extreme classification with label graph correlations , in 
          TheWebConf  2021. [58]  D. Saini, A. K. Jain, K. Dave, J.
        Jiao, A. Singh, R. Zhang and M. Varma, GalaXC: Graph
          neural networks with labelwise attention for extreme
          classification , in  TheWebConf  2021. [59]  H. Ye, Z. Chen, D.-H. Wang, B.-D.
        Davison, Pretrained
          Generalized Autoregressive Model with Adaptive Probabilistic
          Label Clusters for Extreme Multi-label Text Classification ,
        in  ICML  2020. [60]  Y. Prabhu, A. Kag, S. Gopinath, K.
        Dahiya, S. Harsola, R. Agrawal and M. Varma, 
          Extreme multi-label learning with label features for
          warm-start tagging, ranking and recommendation  in 
          WSDM , 2018. [61]  M. Qaraei, E. Schultheis, P.
        Gupta, and R. Babbar,  Convex Surrogates for Unbiased Loss Functions
          in Extreme Classification With Missing Labels   in 
          TheWebConf  , 2021. [62]  N. Gupta, S. Bohra, Y. Prabhu, S.
        Purohit and M. Varma, Generalized
          zero-Shot extreme multi-label learning , in  KDD 
        2021. [63]  K. Dahiya, A. Agarwal, D. Saini,
        K. Gururaj, J. Jiao, A. Singh, S. Agarwal, P. Kar and M. Varma,
        SiameseXML:
          Siamese networks meet extreme classifiers with 100M labels ,
        in  ICML  2021. [64]  J. Ni, J. Li and J. McAuley,  Justifying recommendations using
          distantly-labeled reviews and fined-grained aspects   in 
          Proceedings of Empirical Methods in Natural Language
          Processing (EMNLP) , 2019. [65]  A. Mittal, K. Dahiya, S. Malani,
        J. Ramaswamy, S. Kuruvilla, J. Ajmera, K-h. Chang, S. Agarwal,
        P. Kar and M. Varma, Multimodal
          extreme classification , in CVPR  2022. [66]  K. Dahiya, N. Gupta, D. Saini, A. Soni, 
        Y. Wang, K. Dave, J. Jiao, G. K, P. Dey, A. Singh, D. Hada, 
        V. Jain, B. Paliwal, A. Mittal, S. Mehta, 
        R. Ramjee, S. Agarwal, P. Kar and M. Varma, NGAME: 
          Negative Mining-aware Mini-batching for 
          Extreme Classification , in ArXiv  2022. [67]  E. Schultheis and R. Babbar,  
          Speeding-up One-vs-All Training for Extreme
          Classification via Smart Initialization , in ECML-MLJ  2022. [68]  E. Chien, J. Zhang, C.-J. Hsieh, 
        J.-Y. Jiang, W.-C. Chang, O. Milenkovic and H.-F. Yu,  
        PINA: Leveraging Side Information in eXtreme Multi-label
        Classification via Predicted Instance Neighborhood Aggregation , in ICML  2023. [69]  V. Jain, J. Prakash, D. Saini, J. Jiao, R. Ramjee and M. Varma,  
        Renee: End-to-end training of extreme classification models , in MLSys  2023. [70]  K. Dahiya, S. Yadav, S. Sondhi, D. Saini, S. Mehta, J. Jiao, S. Agarwal, P. Kar and M. Varma,  
        Deep encoders with auxiliary parameters for extreme classification , in KDD  2023. [71]  S. Kharbanda, A. Banerjee, R. Schultheis and R. Babbar,  
          CascadeXML : Rethinking Transformers for End-to-end Multi-resolution Training in Extreme Multi-Label Classification , in NeurIPS  2022. [72]  S. Kharbanda, A. Banerjee, D. Gupta, A. Palrecha, and R. Babbar,  
            InceptionXML : A Lightweight Framework with Synchronized Negative Sampling for Short Text Extreme Classification , in SIGIR  2023. [73]  H. Ye, R. Sunderraman, S. Ji,  
        MatchXML: An Efficient Text-Label Matching Framework for Extreme Multi-Label Text Classification , in TKDE  2024. 
      
        
          Mediamill
           
            
               
           
          
            Method 
            P@1 
            P@3 
            P@5 
            N@1 
            N@3 
            N@5 
            PSP@1 
            PSP@3 
            PSP@5 
            PSN@1 
            PSN@3 
            PSN@5 
            Model size (GB) 
            Train time (hr) 
           
          
            
               
           
          
          
            AnnexML*  
            87.82 
            73.45 
            59.17 
            87.82 
            81.50 
            79.22 
            70.14 
            72.76 
            74.02 
            70.14 
            72.31 
            73.13 
            - 
            - 
           
          
            CPLST*  
            83.82 
            67.32 
            52.80 
            83.82 
            75.29 
            71.92 
            66.23 
            65.28 
            63.70 
            66.23 
            65.89 
            64.77 
            - 
            - 
           
          
            CS*  
            78.95 
            60.93 
            44.27 
            78.95 
            68.97 
            62.88 
            62.53 
            58.97 
            53.23 
            62.53 
            60.33 
            56.50 
            - 
            - 
           
          
            DiSMEC*  
            81.86 
            62.52 
            45.11 
            81.86 
            70.21 
            63.71 
            62.23 
            59.85 
            54.03 
            62.25 
            61.05 
            57.26 
            - 
            - 
           
          
            FastXML*  
            83.57 
            65.78 
            49.97 
            83.57 
            74.06 
            69.34 
            66.06 
            63.83 
            61.11 
            66.06 
            64.83 
            62.94 
            - 
            - 
           
          
            LEML*  
            81.29 
            64.74 
            49.83 
            81.29 
            72.92 
            69.37 
            64.24 
            62.73 
            59.92 
            64.24 
            63.47 
            61.57 
            - 
            - 
           
          
            LPSR*  
            83.57 
            65.50 
            48.57 
            83.57 
            73.84 
            68.18 
            66.06 
            63.53 
            59.38 
            66.06 
            64.63 
            61.84 
            - 
            - 
           
          
            ML-CSSP 
            83.98 
            67.37 
            53.02 
            83.98 
            75.31 
            72.21 
            66.88 
            65.90 
            64.90 
            66.88 
            66.47 
            65.71 
            - 
            - 
           
          
            PD-Sparse*  
            - 
            - 
            - 
            - 
            - 
            - 
            - 
            - 
            - 
            - 
            - 
            - 
            - 
            - 
           
          
            PPD-Sparse*  
            86.50 
            68.40 
            53.20 
            86.50 
            77.30 
            75.60 
            64.30 
            61.30 
            60.80 
            64.30 
            63.60 
            62.80 
            - 
            - 
           
          
            Parabel*  
            - 
            - 
            - 
            - 
            - 
            - 
            - 
            - 
            - 
            - 
            - 
            - 
            - 
            - 
           
          
            PfastreXML*  
            84.22 
            67.33 
            53.04 
            84.22 
            75.41 
            72.37 
            66.67 
            65.43 
            64.30 
            66.08 
            66.08 
            65.24 
            - 
            - 
           
          
            SLEEC*  
            84.01 
            67.20 
            52.80 
            84.01 
            75.23 
            71.96 
            66.34 
            65.11 
            63.62 
            66.34 
            65.79 
            64.71 
            - 
            - 
           
          
            WSABIE 
            83.35 
            66.18 
            51.46 
            83.35 
            74.21 
            70.55 
            65.79 
            64.07 
            61.89 
            65.79 
            64.88 
            63.36 
            - 
            - 
           
          
            kNN*  
            83.91 
            67.12 
            52.99 
            83.91 
            75.22 
            72.21 
            66.51 
            65.21 
            64.30 
            66.51 
            65.91 
            65.20 
            - 
            - 
           
           
            
               
           
         
      
      
        
          Bibtex
           
            
               
           
          
            Method 
            P@1 
            P@3 
            P@5 
            N@1 
            N@3 
            N@5 
            PSP@1 
            PSP@3 
            PSP@5 
            PSN@1 
            PSN@3 
            PSN@5 
            Model size (GB) 
            Train time (hr) 
           
          
            
               
           
          
          
            1-vs-All 
            62.62 
            39.09 
            28.79 
            62.62 
            59.13 
            61.58 
            48.84 
            52.96 
            59.29 
            48.84 
            51.62 
            55.09 
            - 
            - 
           
          
            CPLST*  
            62.38 
            37.84 
            27.62 
            62.38 
            57.63 
            59.71 
            48.17 
            50.86 
            56.42 
            48.17 
            49.94 
            52.96 
            - 
            - 
           
          
            CS*  
            58.87 
            33.53 
            23.72 
            58.87 
            52.19 
            53.25 
            46.04 
            45.08 
            48.17 
            46.04 
            45.25 
            46.89 
            - 
            - 
           
          
            DiSMEC*  
            - 
            - 
            - 
            - 
            - 
            - 
            - 
            - 
            - 
            - 
            - 
            - 
            - 
            - 
           
          
            FastXML*  
            63.42 
            39.23 
            28.86 
            63.42 
            59.51 
            61.70 
            48.54 
            52.30 
            58.28 
            48.54 
            51.11 
            54.38 
            - 
            - 
           
          
            LEML*  
            62.54 
            38.41 
            28.21 
            62.54 
            58.22 
            60.53 
            47.97 
            51.42 
            57.53 
            47.97 
            50.25 
            53.59 
            - 
            - 
           
          
            LPSR*  
            62.11 
            36.65 
            26.53 
            62.11 
            56.50 
            58.23 
            49.20 
            50.14 
            55.01 
            49.20 
            49.78 
            52.41 
            - 
            - 
           
          
            ML-CSSP 
            44.98 
            30.43 
            23.53 
            44.98 
            44.67 
            47.97 
            32.38 
            38.68 
            45.96 
            32.38 
            36.73 
            40.74 
            - 
            - 
           
          
            PD-Sparse*  
            61.29 
            35.82 
            25.74 
            61.29 
            55.83 
            57.35 
            48.34 
            48.77 
            52.93 
            48.34 
            48.49 
            50.72 
            - 
            - 
           
          
            PPD-Sparse*  
            - 
            - 
            - 
            - 
            - 
            - 
            - 
            - 
            - 
            - 
            - 
            - 
            - 
            - 
           
          
            Parabel*  
            64.53 
            38.56 
            27.94 
            64.53 
            59.35 
            61.06 
            50.88 
            52.42 
            57.36 
            50.88 
            51.90 
            54.58 
            - 
            - 
           
          
            PfastreXML*  
            63.46 
            39.22 
            29.14 
            63.46 
            59.61 
            62.12 
            52.28 
            54.36 
            60.55 
            52.28 
            53.62 
            56.99 
            - 
            - 
           
          
            ProXML*  
            64.60 
            39.00 
            28.20 
            64.40 
            59.20 
            61.50 
            50.10 
            52.00 
            58.30 
            50.10 
            52.00 
            55.10 
            - 
            - 
           
          
            SLEEC*  
            65.08 
            39.64 
            28.87 
            65.08 
            60.47 
            62.64 
            51.12 
            53.95 
            59.56 
            51.12 
            52.99 
            56.04 
            - 
            - 
           
          
            WSABIE 
            54.78 
            32.39 
            23.98 
            54.78 
            50.11 
            52.39 
            43.39 
            44.00 
            49.30 
            43.39 
            43.64 
            46.50 
            - 
            - 
           
          
            kNN*  
            57.04 
            34.38 
            25.44 
            57.04 
            52.29 
            54.64 
            43.71 
            45.82 
            51.64 
            43.71 
            45.04 
            48.20 
            - 
            - 
           
           
            
               
           
         
      
      
        
          Delicious
           
            
               
           
          
            Method 
            P@1 
            P@3 
            P@5 
            N@1 
            N@3 
            N@5 
            PSP@1 
            PSP@3 
            PSP@5 
            PSN@1 
            PSN@3 
            PSN@5 
            Model size (GB) 
            Train time (hr) 
           
          
            
               
           
          
          
            AnnexML*  
            - 
            - 
            - 
            - 
            - 
            - 
            - 
            - 
            - 
            - 
            - 
            - 
            - 
            - 
           
          
            CPLST*  
            65.31 
            59.95 
            55.31 
            65.31 
            61.16 
            57.80 
            31.10 
            32.40 
            33.02 
            31.10 
            32.07 
            32.55 
            - 
            - 
           
          
            CS*  
            61.36 
            56.46 
            52.07 
            61.36 
            57.66 
            54.44 
            30.60 
            31.84 
            32.26 
            30.60 
            31.54 
            31.89 
            - 
            - 
           
          
            DiSMEC*  
            - 
            - 
            - 
            - 
            - 
            - 
            - 
            - 
            - 
            - 
            - 
            - 
            - 
            - 
           
          
            FastXML*  
            69.61 
            64.12 
            59.27 
            69.61 
            65.47 
            61.90 
            32.35 
            34.51 
            35.43 
            32.35 
            34.00 
            34.73 
            - 
            - 
           
          
            LEML*  
            65.67 
            60.55 
            56.08 
            65.67 
            61.77 
            58.47 
            30.73 
            32.43 
            33.26 
            30.73 
            32.01 
            32.66 
            - 
            - 
           
          
            LPSR*  
            65.01 
            58.96 
            53.49 
            65.01 
            60.45 
            56.38 
            31.34 
            32.57 
            32.77 
            31.34 
            32.29 
            32.50 
            - 
            - 
           
          
            ML-CSSP 
            63.04 
            56.26 
            50.16 
            63.04 
            57.91 
            53.36 
            29.48 
            30.27 
            30.02 
            29.48 
            30.10 
            29.98 
            - 
            - 
           
          
            PD-Sparse*  
            51.82 
            44.18 
            38.95 
            51.82 
            46.00 
            42.02 
            25.22 
            24.63 
            23.85 
            25.22 
            24.80 
            24.25 
            - 
            - 
           
          
            Parabel*  
            67.44 
            61.83 
            56.75 
            67.44 
            63.15 
            59.41 
            32.69 
            34.00 
            34.53 
            32.69 
            33.69 
            34.10 
            - 
            - 
           
          
            PfastreXML*  
            67.13 
            62.33 
            58.62 
            67.13 
            63.48 
            60.74 
            34.57 
            34.80 
            35.86 
            34.57 
            34.71 
            35.42 
            - 
            - 
           
          
            SLEEC*  
            67.59 
            61.38 
            56.56 
            67.59 
            62.87 
            59.28 
            32.11 
            33.21 
            33.83 
            32.11 
            32.93 
            33.41 
            - 
            - 
           
          
            WSABIE 
            64.13 
            58.13 
            53.64 
            64.13 
            59.59 
            56.25 
            31.25 
            32.02 
            32.47 
            31.25 
            31.84 
            32.18 
            - 
            - 
           
          
            kNN*  
            64.95 
            58.89 
            54.11 
            64.95 
            60.32 
            56.77 
            31.03 
            32.02 
            32.43 
            31.03 
            31.76 
            32.09 
            - 
            - 
           
           
            
               
           
         
      
      
        
          EURLex-4K
           
            
               
           
          
            Method 
            P@1 
            P@3 
            P@5 
            N@1 
            N@3 
            N@5 
            PSP@1 
            PSP@3 
            PSP@5 
            PSN@1 
            PSN@3 
            PSN@5 
            Model size (GB) 
            Train time (hr) 
           
          
            
               
           
          
          
            AnnexML*  
            79.26 
            64.30 
            52.33 
            79.26 
            68.13 
            61.60 
            34.25 
            39.83 
            42.76 
            34.25 
            38.35 
            40.30 
            0.09 
            0.06 
           
          
            APLC-XLNet♦  
            87.72 
            74.56 
            62.28 
            87.72 
            77.90 
            71.75 
            42.93 
            49.84 
            53.07 
            42.93 
            48.00 
            50.40 
            0.48 
            - 
           
          
            Bonsai*  
            82.96 
            69.76 
            58.31 
            82.96 
            73.15 
            67.41 
            37.08 
            45.13 
            49.57 
            37.08 
            42.94 
            46.10 
            0.02 
            0.03 
           
          
            CPLST*  
            58.52 
            45.51 
            32.47 
            58.52 
            48.67 
            40.79 
            24.97 
            27.46 
            25.04 
            24.97 
            26.82 
            25.57 
            - 
            - 
           
          
            CS*  
            62.09 
            48.39 
            40.11 
            62.09 
            51.63 
            47.11 
            24.94 
            27.19 
            28.90 
            25.94 
            26.56 
            27.67 
            - 
            - 
           
          
            DiSMEC*  
            82.40 
            68.50 
            57.70 
            82.40 
            72.50 
            66.70 
            41.20 
            45.40 
            49.30 
            41.20 
            44.30 
            46.90 
            - 
            - 
           
          
            FastXML*  
            76.37 
            63.36 
            52.03 
            76.37 
            66.63 
            60.61 
            33.17 
            39.68 
            41.99 
            33.17 
            37.92 
            39.55 
            0.26 
            0.07 
           
          
            LEML*  
            68.55 
            55.11 
            45.12 
            68.55 
            58.44 
            53.03 
            31.16 
            34.85 
            36.82 
            31.16 
            33.85 
            35.17 
            - 
            - 
           
          
            LPSR*  
            79.89 
            66.01 
            53.80 
            79.89 
            69.62 
            63.04 
            37.97 
            44.01 
            46.17 
            37.97 
            42.44 
            43.97 
            - 
            - 
           
           MatchXML♦   88.85  76.02  63.30  88.85  79.50  73.26  46.73  54.23  58.19  46.73  52.33  55.29  0.6  0.20   
          
            ML-CSSP*  
            75.45 
            62.70 
            52.51 
            75.45 
            65.97 
            60.78 
            43.86 
            45.72 
            46.97 
            43.86 
            45.23 
            46.03 
            - 
            - 
           
          
            PD-Sparse*  
            83.83 
            70.72 
            59.21 
            - 
            - 
            - 
            37.61 
            46.05 
            50.79 
            - 
            - 
            - 
            - 
            - 
           
          
            PPD-Sparse*  
            83.40 
            70.90 
            59.10 
            83.40 
            74.40 
            68.20 
            45.20 
            48.50 
            51.00 
            45.20 
            47.50 
            49.10 
            - 
            - 
           
          
            Parabel*  
            82.25 
            68.71 
            57.53 
            82.25 
            72.17 
            66.54 
            36.44 
            44.08 
            48.46 
            36.44 
            41.99 
            44.91 
            0.03 
            0.02 
           
          
            PfastreXML*  
            71.36 
            59.90 
            50.39 
            71.36 
            62.87 
            58.06 
            26.62 
            34.16 
            38.96 
            26.62 
            32.07 
            35.23 
            - 
            - 
           
          
            SLEEC*  
            63.40 
            50.35 
            41.28 
            63.40 
            53.56 
            48.47 
            24.10 
            27.20 
            29.09 
            24.10 
            26.37 
            27.62 
            - 
            - 
           
          
            WSABIE*  
            72.28 
            58.16 
            47.73 
            72.28 
            61.64 
            55.92 
            28.60 
            32.49 
            34.46 
            28.60 
            31.45 
            32.77 
            - 
            - 
           
          
            XT*  
            78.97 
            65.64 
            54.44 
            78.97 
            69.05 
            63.23 
            33.52 
            40.35 
            44.02 
            33.52 
            38.50 
            41.09 
            0.03 
            0.10 
           
          
            kNN*  
            81.73 
            68.78 
            57.44 
            81.73 
            72.15 
            66.40 
            36.36 
            44.04 
            48.29 
            36.36 
            41.95 
            44.78 
            - 
            - 
           
           
            
               
           
         
      
      
        
          Wiki10-31K
           
            
               
           
          
            Method 
            P@1 
            P@3 
            P@5 
            N@1 
            N@3 
            N@5 
            PSP@1 
            PSP@3 
            PSP@5 
            PSN@1 
            PSN@3 
            PSN@5 
            Model size (GB) 
            Train time (hr) 
           
          
            
               
           
          
          
            AnnexML*  
            86.49 
            74.27 
            64.20 
            86.49 
            77.13 
            69.44 
            11.90 
            12.76 
            13.58 
            11.90 
            12.53 
            13.10 
            0.62 
            0.39 
           
          
            APLC-XLNet♦  
            89.44 
            78.93 
            69.73 
            89.44 
            81.38 
            74.41 
            14.84 
            15.85 
            17.04 
            14.84 
            15.58 
            16.40 
            0.54 
            - 
           
           CascadeXML♦   89.18  79.71  71.19  -  -  -  13.32  15.35  17.45  -  -  -  -  -   
          
            AttentionXML♦  
            87.47 
            78.48 
            69.37 
            87.47 
            80.61 
            73.79 
            15.57 
            16.80 
            17.82 
            - 
            - 
            - 
            - 
            - 
           
          
            Bonsai*  
            84.69 
            73.69 
            64.39 
            84.69 
            76.25 
            69.17 
            11.78 
            13.27 
            14.28 
            11.78 
            12.89 
            13.61 
            0.13 
            0.64 
           
          
            DiSMEC*  
            85.20 
            74.60 
            65.90 
            84.10 
            77.10 
            70.40 
            13.60 
            13.10 
            13.80 
            13.60 
            13.20 
            13.60 
            - 
            - 
           
          
            FastXML*  
            83.03 
            67.47 
            57.76 
            84.31 
            75.35 
            63.36 
            9.80 
            10.17 
            10.54 
            9.80 
            10.08 
            10.33 
            - 
            - 
           
          
            LEML*  
            73.47 
            62.43 
            54.35 
            73.47 
            64.92 
            58.69 
            9.41 
            10.07 
            10.55 
            9.41 
            9.90 
            10.24 
            - 
            - 
           
          
            LPSR-NB*  
            72.72 
            58.51 
            49.50 
            72.72 
            61.71 
            54.63 
            12.79 
            12.26 
            12.13 
            12.79 
            12.38 
            12.27 
            - 
            - 
           
          
            LightXML♦  
            89.45 
            78.96 
            69.85 
            - 
            - 
            - 
            - 
            - 
            - 
            - 
            - 
            - 
            - 
            - 
           
           MatchXML♦   89.74  81.51  72.18  89.74  83.46  76.53  16.92  19.29  20.93  16.92  18.70  19.91  2.9  0.22   
          
            Parabel*  
            84.17 
            72.46 
            63.37 
            84.17 
            75.22 
            68.22 
            11.68 
            12.73 
            13.69 
            11.68 
            12.47 
            13.14 
            0.18 
            0.20 
           
          
            PfastreXML*  
            83.57 
            68.61 
            59.10 
            83.57 
            72.00 
            64.54 
            19.02 
            18.34 
            18.43 
            19.02 
            18.49 
            18.52 
            - 
            - 
           
          
            SLEEC*  
            85.88 
            72.98 
            62.70 
            85.88 
            76.02 
            68.13 
            11.14 
            11.86 
            12.40 
            11.14 
            11.68 
            12.06 
            1.13 
            0.21 
           
          
            XML-CNN♦  
            81.42 
            66.23 
            56.11 
            81.42 
            69.78 
            61.83 
            9.39 
            10.00 
            10.20 
            - 
            - 
            - 
            - 
            - 
           
          
            XT*  
            86.15 
            75.18 
            65.41 
            86.15 
            77.76 
            70.35 
            11.87 
            13.08 
            13.89 
            11.87 
            12.78 
            13.36 
            0.37 
            0.39 
           
          
            XTransformer♦  
            88.51 
            78.71 
            69.62 
            - 
            - 
            - 
            - 
            - 
            - 
            - 
            - 
            - 
            - 
            - 
           
           
            
               
           
         
      
      
        
          Delicious-200K
           
            
               
           
          
            Method 
            P@1 
            P@3 
            P@5 
            N@1 
            N@3 
            N@5 
            PSP@1 
            PSP@3 
            PSP@5 
            PSN@1 
            PSN@3 
            PSN@5 
            Model size (GB) 
            Train time (hr) 
           
          
            
               
           
          
          
            AnnexML*  
            46.79 
            40.72 
            37.67 
            46.79 
            42.17 
            39.84 
            7.18 
            8.05 
            8.74 
            7.18 
            7.78 
            8.22 
            10.74 
            2.58 
           
          
            Bonsai*  
            46.69 
            39.88 
            36.38 
            46.69 
            41.51 
            38.84 
            7.26 
            7.97 
            8.53 
            7.26 
            7.75 
            8.10 
            3.91 
            64.42 
           
          
            DiSMEC*  
            45.50 
            38.70 
            35.50 
            45.50 
            40.90 
            37.80 
            6.50 
            7.60 
            8.40 
            6.50 
            7.50 
            7.90 
            - 
            - 
           
          
            FastXML*  
            43.07 
            38.66 
            36.19 
            43.07 
            39.70 
            37.83 
            6.48 
            7.52 
            8.31 
            6.51 
            7.26 
            7.79 
            - 
           
          
            LEML*  
            40.73 
            37.71 
            35.84 
            40.73 
            38.44 
            37.01 
            6.06 
            7.24 
            8.10 
            6.06 
            6.93 
            7.52 
            - 
            - 
           
          
            LPSR-NB 
            18.59 
            15.43 
            14.07 
            18.59 
            16.17 
            15.13 
            3.24 
            3.42 
            3.64 
            3.24 
            3.37 
            3.52 
            - 
            - 
           
          
            PD-Sparse*  
            34.37 
            29.48 
            27.04 
            34.37 
            30.60 
            28.65 
            5.29 
            5.80 
            6.24 
            5.29 
            5.66 
            5.96 
            - 
            - 
           
          
            PPD-Sparse*  
            - 
            - 
            - 
            - 
            - 
            - 
            - 
            - 
            - 
            - 
            - 
            - 
            - 
            - 
           
          
            Parabel*  
            46.86 
            40.08 
            36.70 
            46.86 
            41.69 
            39.10 
            7.22 
            7.94 
            8.54 
            7.22 
            7.71 
            8.09 
            6.36 
            9.58 
           
          
            Parabel*  
            46.97 
            40.08 
            36.63 
            46.97 
            41.72 
            39.07 
            7.25 
            7.94 
            8.52 
            7.25 
            7.75 
            8.15 
            - 
            - 
           
          
            PfastreXML*  
            41.72 
            37.83 
            35.58 
            41.72 
            38.76 
            37.08 
            3.15 
            3.87 
            4.43 
            3.15 
            3.68 
            4.06 
            15.34 
            3.60 
           
          
            SLEEC*  
            47.85 
            42.21 
            39.43 
            47.85 
            43.52 
            41.37 
            7.17 
            8.16 
            8.96 
            7.17 
            7.89 
            8.44 
            - 
            - 
           
          
            XT*  
            45.59 
            39.10 
            35.92 
            45.59 
            40.62 
            38.17 
            6.96 
            7.71 
            8.33 
            6.96 
            7.47 
            7.86 
            2.70 
            31.22 
           
           
            
               
           
         
      
      
        
          WikiLSHTC-325K
           
            
               
           
          
            Method 
            P@1 
            P@3 
            P@5 
            N@1 
            N@3 
            N@5 
            PSP@1 
            PSP@3 
            PSP@5 
            PSN@1 
            PSN@3 
            PSN@5 
            Model size (GB) 
            Train time (hr) 
           
          
            
               
           
          
          
            AnnexML*  
            63.30 
            40.64 
            29.80 
            63.30 
            56.61 
            56.24 
            25.13 
            30.46 
            34.30 
            25.13 
            31.16 
            34.36 
            29.70 
            4.24 
           
          
            Bonsai*  
            66.41 
            44.40 
            32.92 
            66.41 
            60.69 
            60.53 
            28.11 
            35.36 
            39.73 
            28.11 
            35.42 
            38.94 
            2.43 
            3.04 
           
          
            DiSMEC*  
            64.40 
            42.50 
            31.50 
            64.40 
            58.50 
            58.40 
            29.10 
            35.60 
            39.50 
            29.10 
            35.90 
            39.40 
            - 
            - 
           
          
            FastXML*  
            49.75 
            33.10 
            24.45 
            49.75 
            45.23 
            44.75 
            16.35 
            20.99 
            23.56 
            16.35 
            19.56 
            21.02 
            - 
            - 
           
          
            LEML*  
            19.82 
            11.43 
            8.39 
            19.82 
            14.52 
            13.73 
            3.48 
            3.79 
            4.27 
            3.48 
            3.68 
            3.94 
            - 
            - 
           
          
            LPSR-NB 
            27.44 
            16.23 
            11.77 
            27.44 
            23.04 
            22.55 
            6.93 
            7.21 
            7.86 
            6.93 
            7.11 
            7.46 
            - 
            - 
           
          
            PD-Sparse*  
            61.26 
            39.48 
            28.79 
            61.26 
            55.08 
            54.67 
            28.34 
            33.50 
            36.62 
            28.34 
            31.92 
            33.68 
            - 
            - 
           
          
            PPD-Sparse*  
            64.08 
            41.26 
            30.12 
            - 
            - 
            - 
            27.47 
            33.00 
            36.29 
            - 
            - 
            - 
            - 
            - 
           
          
            Parabel*  
            65.04 
            43.23 
            32.05 
            65.04 
            59.15 
            58.93 
            26.76 
            33.27 
            37.36 
            26.76 
            31.26 
            33.57 
            3.10 
            0.75 
           
          
            PfastreXML*  
            56.05 
            36.79 
            27.09 
            56.05 
            50.59 
            50.13 
            30.66 
            31.55 
            33.12 
            30.66 
            31.24 
            32.09 
            14.23 
            6.34 
           
          
            ProXML*  
            63.60 
            41.50 
            30.80 
            63.80 
            57.40 
            57.10 
            34.80 
            37.70 
            41.00 
            34.80 
            38.70 
            41.50 
            - 
            - 
           
          
            SLEEC*  
            54.83 
            33.42 
            23.85 
            54.83 
            47.25 
            46.16 
            20.27 
            23.18 
            25.08 
            20.27 
            22.27 
            23.35 
            - 
            - 
           
          
            XT*  
            56.54 
            37.17 
            27.73 
            56.54 
            50.48 
            50.36 
            20.56 
            25.42 
            28.90 
            20.56 
            25.30 
            27.90 
            4.50 
            1.89