
DeepXML: A Deep Extreme Multi-Label Learning Framework
Applied to Short Text Documents

Kunal Dahiya

kunalsdahiya@gmail.com

IIT Delhi

India

Deepak Saini

desaini@microsoft.com

Microsoft Research

India

Anshul Mittal

Ankush Shaw

me@anshulmittal.org

shawank17198@gmail.com

IIT Delhi

India

Kushal Dave

Akshay Soni

kudave@microsoft.com

Akshay.Soni@microsoft.com

Microsoft

USA

Himanshu Jain

Sumeet Agarwal

himanshu.j689@gmail.com

sumeet@ee.iitd.ac.in

IIT Delhi

India

Manik Varma

manik@microsoft.com

Microsoft Research

IIT Delhi

India

ABSTRACT
Scalability and accuracy are well recognized challenges in deep

extreme multi-label learning where the objective is to train archi-

tectures for automatically annotating a data point with the most rel-

evant subset of labels from an extremely large label set. This paper

develops the DeepXML framework that addresses these challenges

by decomposing the deep extreme multi-label task into four simpler

sub-tasks each of which can be trained accurately and efficiently.

Choosing different components for the four sub-tasks allows Deep-

XML to generate a family of algorithms with varying trade-offs

between accuracy and scalability. In particular, DeepXML yields the

Astec algorithm that could be 2-12% more accurate and 5-30× faster

to train than leading deep extreme classifiers on publically avail-

able short text datasets. Astec could also efficiently train on Bing

short text datasets containing up to 62 million labels while making

predictions for billions of users and data points per day on com-

modity hardware. This allowed Astec to be deployed on the Bing

search engine for a number of short text applications ranging from

matching user queries to advertiser bid phrases to showing person-

alized ads where it yielded significant gains in click-through-rates,

coverage, revenue and other online metrics over state-of-the-art

techniques currently in production. DeepXML’s code is available

at https://github.com/Extreme-classification/deepxml.

CCS CONCEPTS
• Computing methodologies→Machine learning; Supervised
learning by classification.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

WSDM ’21, March 8–12, 2021, Virtual Event, Israel
© 2021 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 978-1-4503-8297-7/21/03. . . $15.00

https://doi.org/10.1145/3437963.3441810

KEYWORDS
Extreme multi-label learning, large-scale learning, short-text, bid-

phrase recommendation, personalized ads

ACM Reference Format:
Kunal Dahiya, Deepak Saini, Anshul Mittal, Ankush Shaw, Kushal Dave,

Akshay Soni, Himanshu Jain, Sumeet Agarwal, and Manik Varma. 2021.

DeepXML: A Deep Extreme Multi-Label Learning Framework Applied to

Short Text Documents. In Proceedings of the Fourteenth ACM International
Conference on Web Search and Data Mining (WSDM ’21), March 8–12, 2021,
Virtual Event, Israel. ACM, New York, NY, USA, 9 pages. https://doi.org/10.

1145/3437963.3441810

1 INTRODUCTION
Objective: This paper develops the DeepXML framework for deep

extreme multi-label learning where the goal is to train architectures

for automatically annotating a data point with the most relevant

subset of labels from an extremely large label set. Note that multi-

label learning generalizes multi-class classification which aims to

predict a single mutually exclusive label. The objectives for develop-

ing DeepXML are threefold. First, DeepXML provides a framework

for how to think about deep extreme multi-label learning that can

not only be used to analyze seemingly disparate algorithms such

as XML-CNN [28] and MACH [32] but which can also be used

to derive significantly improved versions of such state-of-the-art

deep extreme classifiers. Second, DeepXML can generate a family

of new state-of-the-art algorithms obtained by combining various

types of feature architectures with different classifiers in a scalable

and accurate manner. In particular, DeepXML was used to derive

Astec (standing for an Accelerated Short Text Extreme Classifier)

which is specialized for extremely low-latency and high throughput

short text applications as it can make billions of predictions per

day and handle peak rates of up to a hundred and twenty thou-

sand queries per second. Third, DeepXML provides an easy-to-use

modular framework in which practitioners can design architectures

for diverse applications by making minimal changes and simply

plugging in the components of their choice rather than going back

https://github.com/Extreme-classification/deepxml
https://doi.org/10.1145/3437963.3441810
https://doi.org/10.1145/3437963.3441810
https://doi.org/10.1145/3437963.3441810

to the drawing board and designing a specialized architecture for

each application from scratch.

Short text applications: This paper focuses on the classifica-

tion of short text documents, having just 3-10 words on average,

into millions of labels. In particular, this paper considers a range

of short text applications including matching user search engine

queries to advertiser bid phrases, predicting Wikipedia tags from a

document’s title, predicting frequently bought together products

from a given retail product’s name and showing personalized ads

based on the set of webpage titles in a user’s browsing history. Such

applications pose a number of additional challenges to deep ex-

treme classifiers as compared to long text documents having up to

200 words on average. First, the deep extreme classifier is forced to

make predictions on the basis of just 3-10 words on average which

is a significantly harder task than long text document classification.

Second, short text corpora have fewer occurrences of each word

than long text corpora thereby leading to a paucity of training data.

For instance, the Bing datasets have millions of words which occur

at most twice in the training set and thus learning good quality em-

beddings for such rare words can be challenging. Third, low-latency

and high-throughput short text applications with billions of users

require predictions in milliseconds on a CPU to keep operating

and energy costs low. While these challenges seem daunting at the

extreme scale, it is nevertheless important to design solutions for

short text applications as they can benefit billions of people.

Challenges in deep extreme classification: Deep extreme

classifiers jointly learn a feature architecture with an extremely

large classification layer leading to the following challenges. First,

training and fine-tuning the feature architecture for millions of

labels can be computationally expensive and can also lead to learn-

ing poor quality representations when training data is scarce. Sec-

ond, both the forward prediction pass as well as gradient back-

propagation become infeasible if the classification layer has costs

that are linear in the number of labels (such as for a fully connected

output layer). One might be tempted to address these challenges

by replacing the classification layer with highly scalable non-deep

learning based extreme classifiers [19, 41] which reduce the costs

of the forward and backward pass to logarithmic in the number of

labels. This is achieved by learning a sub-linear search data struc-

ture based on graphs [19], trees [20, 24, 40–42, 50], hashes [46, 47]

or clustering [7] in a fixed feature space such as a bag-of-words rep-

resentation or fixed pre-trained embeddings. Unfortunately, such

algorithms cannot be directly used to replace the classification layer

in the deep learning setting as the feature representation changes

with every mini-batch update. This necessitates the frequent re-

computation or updation of the sub-linear search data structure on

the updated features which can be prohibitively expensive. As such,

deep learning presents additional statistical and computational

challenges to extreme classification.

DeepXML: DeepXML addresses these challenges by decompos-

ing the deep extreme learning task into the following four sub-tasks

or modules each of which can be constrained to be learnt in log-time

while maintaining accuracy. In Module I, an intermediate feature

representation is learnt using an application-appropriate feature

architecture trained on a simpler surrogate task. The objective in

Module I is to efficiently learn a near-final feature representation

which can be fixed and used to eliminate all but a logarithmic num-

ber of the hardest negative labels for each data point. Then, in

Module II, a graph, tree, hash or clustering based sub-linear search

data structure is trained just once on the fixed intermediate features

to shortlist the hardest negative labels for each data point in log-

time. The motivation is to reduce the problem for any given data

point from an extreme task with millions of labels to a traditional

classification task with just hundreds of labels. Note that this can

be achieved with minimal loss in accuracy as uninformative nega-

tive labels can be discarded since they don’t contribute to the final

solution [19]. Module III then transfers the intermediate features

to learn final features for the given extreme task subject to the

constraint that the final features don’t lie very far away from the

intermediate features. This is done so as to get all the accuracy

gains of fine-tuning for the task at hand while ensuring that the

hardest negatives continue to lie in the shortlisted label set. Module

IV jointly learns an extreme classifier along with the final features

in log-time using just the shortlisted labels. Varying the choices

for the component including the feature architecture, the surrogate

task, the sub-linear search data structure, the negative sampling pro-

cedure, the transfer mechanism and the extreme classifier leads to a

family of state-of-the-art algorithms including Astec, DECAF [36],

GalaXC [45], ECLARE [37], etc.
Astec: Astec was derived from DeepXML specifically for short

text applications. It employed a low capacity feature architecture

which could be learnt accurately from limited training data. This

allowed Astec to be 2-12% more accurate than leading deep extreme

classifiers on publicly available benchmark datasets while also be-

ing up to 20% more accurate than state-of-the-art techniques for

matching user queries to advertiser bid phrases on Bing datasets.

Furthermore, by leveraging the DeepXML framework, Astec could

be 5-30× faster to train than leading deep extreme classifiers and

could efficiently scale to problems involving 62 million labels. Fi-

nally, Astec could make predictions in milliseconds on a CPU and

could therefore make billions of predictions per day, with peak rates

of 120,000 queries per second, using commodity hardware. As a

result, Astec increased the click-through-rate by 6.5% over state-

of-the-art techniques in production for showing personalized ads

based on the webpage titles and URLs in a user’s browsing history.

Similarly, Astec yielded an increase of 1.6% in revenue per thousand

queries, a 2.9% increase in match quality and an 8.6% increase in

query coverage over leading techniques in production for matching

user queries to advertiser bid phrases. These represent just two of

the multiple short text applications for which Astec resulted in a

significant increase in key metrics on Bing.

2 RELATEDWORK
DeepXML and extreme Classification: Much progress has been

made in extreme classification [1–3, 7, 19–21, 24, 35, 40–42, 47, 50,

53, 54] for fixed representations such as bag-of-words features and

pre-trained embeddings. Unfortunately, these algorithms cannot be

used directly for deep extreme classification as the sub-linear search

data structure they rely on for scalability needs to be frequently

recomputed due to the change in features with every mini-batch

update. As a result, specialized deep extreme classifiers [10, 22,

backpropagates

does not backpropagate

(a) Surrogate learning task

Hard negatives (ANN search)

(b) Extreme learning task
citrus

𝒵0

fruits

𝐯
ReLU

ො𝐱ො𝐱0 𝛿𝐯 Δ𝐯 𝒵

……

𝐑0R
eL

U

……

𝐑

R
eLU

Figure 1: Astec’s architecture: Please refer to the text for de-
tails. Best viewed under magnification and in color.

28, 32, 51, 56, 57] have been developed and many of these can be

analysed and improved in the DeepXML framework.

Astec and short text extreme classification: Of particular
relevance to Astec and this paper are specialized extreme classi-

fiers that have been developed for short text applications including

Slice [19] for recommending related queries on Bing andMACH [32]

for searching Amazon retail products. Slice is a highly scalable clas-

sifier for fixed pre-trained embeddings and, unfortunately, cannot

be used for deep extreme classification as already mentioned. Astec

could therefore be up to 20%more accurate than Slice on pre-trained

CDSSM [17], FastText [23] or BERT [13] embeddings (see Section 5).

Also note that Slice could always be incorporated into DeepXML’s

second module if desired. Furthermore, Astec can be seen as a

generalization of MACH when analyzed through the DeepXML

framework. In particular, MACH stops training after the first Deep-

XML module and therefore has to learn a large ensemble of base

classifiers to compensate. Astec could be up to 12% more accurate

and orders of magnitude faster to train as it learnt a single base

classifier by efficiently and accurately leveraging the DeepXML

framework with all four modules.

Short text applications: Apart from extreme classification,

four classes of techniques have been developed for matching user

queries to advertiser bid phrases and the other short text applica-

tions considered in this paper. The first class of techniques leverage

additional sources of information such as landing pages [52], web

search results and other queries [9] and are therefore beyond the

scope of this paper. The second class of techniques are based on

generative models [14, 26, 27, 58] that synthesize bid phrases for a

given query. Unfortunately, unconstrained synthesis can result in

poor quality bid phrases being generated while constraining them

through tries [27] or other approaches can limit bid phrase coverage.

The third class of techniques use graph neural networks, random

walks and other graph processing methods on the query-bid phrase,

query-url, query-token or query-query graphs [18, 33]. Features

based on such graphs can be readily incorporated into the Deep-

XML framework by leveraging graph neural networks in the first

and third modules [37, 45]. The fourth class of techniques embed

both queries and bid phrases into the same space using a Siamese

network [4, 12, 17, 44] or two-tower model [25, 55], and make pre-

dictions for a novel query by retrieving the nearest embedded bid

phrases with highest cosine similarity or other metrics. Section 5

demonstrates that Astec could yield significant improvements in

online metrics for multiple short text applications over large en-

sembles of state-of-the-art methods for each class of techniques,

that are currently in production in Bing.

3 THE DEEPXML FRAMEWORK
Notation: Let 𝐿 be the number of labels and 𝑉 be the vocabulary

size if the input is a text document. Each of the 𝑁 training points is

then represented as (x𝑖 , y𝑖), where x𝑖 is a data-point represented
either as a dense vector, sequence of tokens or sparse bag-of-tokens

depending on the application and y𝑖 ∈ {−1, +1}𝐿 is the ground

truth label vector with 𝑦𝑖𝑙 = +1 if label 𝑙 ∈ [𝐿] is relevant to data

point 𝑖 and 𝑦𝑖𝑙 = −1 otherwise.
Components: DeepXML has the following components. First,

a feature architectureZ that maps a data point x𝑖 onto a dense 𝐷

dimensional representation x̂𝑖 , i.e., Z : x𝑖 → x̂𝑖 ∈ R𝐷 . Second, a
surrogate objective to train intermediate feature representations.

Third, a sub-linear search structure and negative sampling proce-

dure. Fourth, a transfer mechanism to obtain final feature repre-

sentations and, finally, parameters W of a classifier model to make

final predictions. Section 4 includes efficient choices made by the

Astec algorithm for all these components.

Summary: Given a task-specific loss function ℓ that measures

the accuracy of a classifier model on a specific label, an ideal

training strategy would train Z,W jointly, taking into account

all positive and all negative labels of all 𝑁 training points, i.e., solve
argminZ,W L(Z,W)

L(Z,W) =
𝑁∑
𝑖=1

𝐿∑
𝑙=1

ℓ (x𝑖 , 𝑦𝑖𝑙 ;Z,W)

However, this strategy requires jointly learning Ω (𝑉𝐷 + 𝐿𝐷) pa-
rameters (to describe Z and W) using the objective L for which

computing even a single gradient takes Ω (𝑁𝐿𝐷) time (as the ob-

jective has 𝑁𝐿 terms) and is prohibitive for even moderate scale

datasets. This remains true even if the objective uses a loss that

does not decompose over the labels such as the F-measure, etc. To
remedy this, DeepXML proposes amodular strategy that effectively
scales to tasks with millions of labels and data points. The core

idea is to solve a much cheaper “surrogate” task (in Module I) and
use this solution to identify (in Module II) shortlists ˆN𝑖 of say

O (log𝐿) negative labels for each data point 𝑖 ∈ [𝑁] (i.e., 𝑦𝑖𝑙 = −1
for all 𝑙 ∈ ˆN𝑖) that offer a good approximation to the objective, i.e.,
for all 𝑖 ∈ [𝑁], it is the case that∑

𝑙 :𝑦𝑖𝑙=−1
ℓ (x𝑖 , 𝑦𝑖𝑙 ;Z,W) ≈

∑
𝑙 ∈ ˆN𝑖

ℓ (x𝑖 , 𝑦𝑖𝑙 ;Z,W) .

For example, if using a margin loss function such as the hinge loss,

a shortlist of all margin violator negative labels would suffice. More

generally, since these labels are expected to incur high loss values

and also be most likely to be confused for a positive label, they are

commonly referred to as hard negatives [19]. After performing a

feature transfer from the surrogate to the original task (in Module
III), final training is done (inModule IV) to learnZ,W by solving

a much less expensive optimization problem with the objective
ˆL

ˆL(Z,W) =
𝑁∑
𝑖=1

∑
𝑙 ∈ ˆN𝑖∪P𝑖

ℓ (x𝑖 , 𝑦𝑖𝑙 ;Z,W),

where for any 𝑖 ∈ [𝑁], P𝑖 := {𝑙 : 𝑦𝑖𝑙 = +1} denotes the set of

positive labels of that data point. Minimizing
ˆL(Z,W) is expected

to yield parameters that resemble those obtained by minimizing

L(Z,W) due to the way hard negatives are designed. However,

each module in the DeepXML framework can be executed in no

more than O (𝑁𝐷 log𝐿) time if careful choices are made. Finally,

note that DeepXML supports learning an ensemble of multiple

learners by training them from scratch or else simply training a

re-ranker to cut down the training costs (See section 4).

Flexibility: DeepXML offers the flexibility of tackling a range of

disparate applications with diverse inputs ranging from documents

to images to graphs by letting practitioners plug in the components

of their choice with minimal effort and without having to redesign

the entire architecture from scratch for each application. Various

feature architectures, ranging from convolutions to transformers, as

well as classifier architectures, ranging from 1-vs-All to trees, can be

plugged in depending on the accuracy and scalability requirements.

Furthermore, DeepXML offers the flexibility of using diverse types

of deep extreme classifiers, ranging from XML-CNN to MACH,

by casting them in the proposed framework. Finally, DeepXML

also offers the flexibility to incorporate metadata such as label

features [36] or label correlations [37] into the various modules to

obtain superior performance. This allowed DeepXML to be used for

a number of applications including text ads, product ads, rich ads,

native ads, retail product recommendation, news recommendation,

personalized query recommendation, etc.

3.1 Module I: Intermediate representation
In this module, an intermediate feature architectureZ0

is trained

using a surrogate task. Several considerations need to be kept in

mind while choosing a feature architecture and surrogate task. The

feature architecture Z0
should be trainable from available data

especially with respect to rare tokens and rare labels. Z0
should

also be able to efficiently embed data points x𝑖 ↦→ x̂0
𝑖
, ideally in

time O (𝑐𝑁𝐷 log𝐿) where 𝑐 is some constant depending on the

architecture, to satisfy the requirements of low-latency and high-

throughput applications. Simultaneously, the surrogate task should

be solvable faster than solving argminZ,W L(Z,W), ideally offer-

ing gradient computations in time O (𝑐𝑁𝐷 log𝐿). It should also

promote learning of a feature architecture Z0
whose data point

representations, say x̂0
𝑖
= Z0 (x𝑖), closely resemble those offered

byZ, say x̂𝑖 = Z(x𝑖). Recall thatZ is the feature architecture that

could have been learnt by directly solving argminZ,W L(Z,W).
Doing so ensures that x̂0

𝑖
and x̂𝑖 have approximately the same near-

est neighbors and label shortlists generated using x̂0
𝑖
(in Module II)

are apt proxies for those that could have been generated using x̂𝑖 .
The feature architectureZ0

may be learnt in several ways. Un-

supervised surrogate tasks include skip-gram models [23, 34], next

sentence prediction [13], masked languagemodeling [13], andmulti-

task learning [29]. While scalable, architectures learnt using unsu-

pervised trainingmay lie far away from, andwere empirically found

to be 4-5% less accurate than, those learnt using supervised train-

ing (see Table 6 in the supplementary material). Supervised learning

techniques cut down the training cost by reducing the effective

number of labels to �̂� ≪ 𝐿. This can be implicitly done by sampling

a small sub-set of labels in an online manner, say by mini-batch neg-

ative sampling [15], or explicitly by label selection, label projection

or label clustering. Label selection methods [5, 8] select a subset of

labels𝔏 but were found to offer sub-optimal accuracies. These meth-

ods suffer from poor token coverage: if the set of data points tagged

with at least one label in 𝔏, i.e.,
{
𝑖 : 𝑦𝑖 𝑗 = +1 for any 𝑗 ∈ 𝔏

}
do not

cover all vocabulary tokens, then either pre-trained token embed-

dings have to be externally sourced or else performance may suffer.

Ensuring perfect token coverage is usually challenging – nearly 1M

labels had to be selected in order to cover 95% of the vocabulary on

the Q2B-3M dataset which defeats the very purpose of creating a

surrogate task. Low-rank projection methods [7, 32, 35, 47] project

labels on to a low-dimensional space as ŷ𝑖 = Py𝑖 , where P ∈ R�̂�×𝐿
is a projection matrix. These are theoretically well understood but

offered accuracies similar to label selection approaches in our ex-

periments. Label clustering approaches [24, 36, 41, 46, 56] cluster

labels and treat each cluster as a meta label using either explicit

label features (using state-of-the-art encoders [13, 23]) or else us-

ing indirect label representations [19, 41]. Label clustering-based

approaches were found to offer the best performance in the experi-

ments reported in section 5 but other approaches might be more

suitable for other applications.

3.2 Module II: Negative sampling
In this module,Z0

is used to obtain intermediate representations

x̂0
𝑖
= Z0 (x𝑖) for all data points which are then used to obtain

shortlists
ˆN𝑖 ⊂ [𝐿] of the O (log𝐿) most confusing or “hardest”

negative labels, for every data point 𝑖 ∈ [𝑁]. Such deliberate hard

negative mining outperforms cheaper alternatives such as mini-

batch sampling [15], or sampling negatives from the power law

distribution [34] (see Fig. 2 in the supplementary material). This is

because the probability of choosing the most confusing negative

labels is negligible when the number of labels is in the millions. Two

main considerations need to be kept in mind while creating these

shortlists. First, the shortlist should contain negative labels most

likely to be confused for positive labels to offer concise and directed

signals while training the classifiers. Second, the shortlist should

be computable for every data point 𝑖 ∈ [𝑁] in time sub-linear

in 𝐿. Several options exist including those based on graphs [19,

31], trees [24, 41, 46], clusters [36, 56] or hashing [7, 32, 43] that

achieve sub-linear time negative sampling when working with fixed

features. Note that it is possible to reuse the same data structure to

shortlist O (log𝐿) labels during prediction as well.

3.3 Module III: Transfer learning
In this module, the final form of the feature architectureZ is created

by adapting the intermediate architectureZ0
. A non-trivial transfer

may be required sinceZ0
is tuned for the surrogate task and not

the original task. If this transfer involves any re-parametrization,

any free parameters thus introduced are either trained separately

or else fine-tuned jointly in Module-IV (see below). Three main con-

siderations need to be kept in mind while performing this feature

http://manikvarma.org/pubs/dahiya21.pdf
http://manikvarma.org/pubs/dahiya21.pdf

transfer. First,Z should not impose significant computational over-

head as compared toZ0
. Second, additional parameters introduced

in Z should be trainable from available training data, especially

with respect to rare tokens, in time O (𝑁𝐷 log𝐿). Finally, feature
representations offered by Z should not lie too far away from

those offered byZ0
so that hard negatives discovered in Module

II continue to remain relevant for classifier training. Sophisticated

transfer learning techniques [39, 45, 48, 49] could be deployed in

this module and in particular, a method aiming for higher accura-

cies could choose to fine-tuneZ in its entirety across Modules I-IV,

albeit at greater computational expense.

3.4 Module IV: Classifier learning
In this module, the classifier’s parametersW (and optionally, any

free parameters in Z) are (jointly) learnt using an approximate

objective that considers only the positive labels of a data point, i.e.,
P𝑖 := {𝑙 : 𝑦𝑖𝑙 = +1} and the shortlisted negative labels

ˆN𝑖 .

ˆL(Z,W) =
𝑁∑
𝑖=1

∑
𝑙 ∈ ˆN𝑖∪P𝑖

ℓ (x𝑖 , 𝑦𝑖𝑙 ;Z,W)

Various classifiers including 1-vs-All [2, 3, 19, 24, 41, 56], tree [20, 22,

42, 50] or 𝑘-NN [7, 47] classifiers may serve as suitable choices. Note

that for most commonly used loss functions, computing gradients

∇ ˆL takes only O (𝑁𝐷 log𝐿) time since data points typically con-

tain only logarithmically many positive labels, i.e., |P𝑖 | ≈ O (log𝐿)
and

��� ˆN𝑖

��� ≤ O (log𝐿) by design. Modules I and IV can use distinct

loss functions aimed at promoting recall and precision respectively.

4 THE ASTEC ALGORITHM
Module I: Astec uses the following feature architecture that can
be learnt from limited training data and be computed in 30 𝜇𝑠 on

a CPU thereby meeting the accuracy and latency requirements of

short text applications. In particular, Astec operates with sparse

bag-of-words representations for documents, i.e. x𝑖 ∈ R𝑉 , and
learns 𝐷 dimensional embeddings for each vocabulary token e𝑡 ∈
R𝐷 : 𝑡 ∈ [𝑉]. The intermediate features used by Astec are of the

form x̂0 := Z0 (x) = v + 𝛿v where v := ReLU

(∑𝑉
𝑡=1 𝑥𝑡 · e𝑡

)
, i.e. a

ReLU non-linearity over the TF-IDF weighted linear combination

of the learnt token embeddings, and 𝛿v := ReLU(R0v) where R0 ∈
R𝐷×𝐷

is a residual matrix. The final features are of the form x̂ :=

Z(x) = v + Δv where Δv := ReLU(Rv) and R ∈ R𝐷×𝐷
. Note that

Z0 (x) and Z(x) share the component v and only differ in the

residual component 𝛿v,Δv. Restricting the spectral norms of R0

and R encourages a high fidelity transfer in Module III, i.e., x̂ ≈ x̂0.
Thus, Astec’s feature architecturesZ0,Z are parametrized using

token embeddings E = [e1, . . . , e𝑉] ∈ R𝐷×𝑉
and R0,R ∈ R𝐷×𝐷

.

Astec adopts label clustering for its surrogate task as this was

empirically observed to lead to the highest classification accuracies

while keeping training time to within a few hours on a single GPU

across all datasets in Table 1. Label centroids, defined as 𝜇𝜇𝜇𝑠
𝑙
=

�̂�𝜇𝜇𝑠𝑙
∥�̂�𝜇𝜇𝑠𝑙 ∥2

,

were used to cluster the labels, where, 𝜇𝜇𝜇𝑠
𝑙
= 1

|P𝑙 |
∑
𝑖∈P𝑙

x𝑖 , and
P𝑙 := {𝑖 : 𝑦𝑖𝑙 = +1} is the set of documents for which label 𝑙 is

relevant. The balanced 2-means++ algorithm [41] was used to re-

cursively cluster the labels into balanced partitions until �̂� clusters

were obtained. These clusters were treated as meta-labels and new

(meta) label vectors ŷ𝑖 ∈ {−1, +1}�̂� were created for each train-

ing document as 𝑦𝑖𝑘 = +1 for documents 𝑖 tagged with at least

one label in cluster 𝑘 and 𝑦𝑖𝑘 = −1 otherwise. Using label corre-

lations for improved clustering led to a 2% improvement in recall

as compared to Parabel’s clusters which ignored label correlations.

Predicting the relevant clusters for a given document was taken as

the surrogate task for Module I. 1-vs-All classifiers, parametrized as

Ŵ = [ŵ1, . . . , ŵ�̂�
] ∈ R𝐷×�̂�

andZ0
were trained jointly by solving

argminZ0,Ŵ

𝑁∑
𝑖=1

�̂�∑
𝑘=1

log

(
1 + exp

(
−𝑦𝑖𝑘 · ŵ⊤

𝑘
x̂0𝑖
))

(1)

subject to the constraint supu≠0
R0u

2
/∥u∥

2
≤ 𝜆, and with x̂0

𝑖
=

Z0 (x𝑖). Note that Ŵ,R0 are distinct from their counterparts W,R
used to solve the original task in Module IV. Indeed, Ŵ,R0 were
summarily discarded after completion of Module I. However, E
was shared by Z0

and Z and hence, retained. The power iteration

method [38] was used to constrain the spectral norm of R0. Adding
dropout after each ReLU layer was found to be as effective as using

an explicit regularizer
1

2

∑
𝑙 ŵ⊤

𝑙
ŵ𝑙 . Using �̂� ≤ O (log𝐿), efficient

parallelization on a GPU and the Adam optimizer controlled the

complexity of the surrogate task. In practice,Z0
could be trained

in a couple of hours on a single GPU across all datasets in Table 1.

Module II: The sampling cost of techniques discussed in Sec-

tion 3.2 can be larger than 𝑂 (𝑁𝐷 log𝐿) if document features x̂0
𝑖

keep changing during training due toZ0
getting updated with each

mini-batch. Astec tackles this challenge by freezing the intermedi-

ate representations after completion of Module I before training a

sub-linear search data structure to discover hard negatives using

multiple label representations. For simplicity, Astec utilizes v to

sample hard negatives which were found to be just as effective as

those sampled using x̂0. A four-step procedure was adopted to sam-

ple hard negatives. First, multiple representations were computed

for each label (refer to section A.4 in the supplementary material).

Then, two Approximate Nearest Neighbour Structures (ANNS) [31]

were deployed: ANNS
𝑥
over {v𝑖 : 𝑖 ∈ [𝑁]} and ANNS

𝜇
over label

representations defined as 𝜇𝜇𝜇0
𝑙
=

�̂�𝜇𝜇0𝑙�̂�𝜇𝜇0𝑙 2 where 𝜇𝜇𝜇0
𝑙
= 1

|P𝑙 |
∑
𝑖∈P𝑙

v𝑖 .

Recall that v𝑖 is the component shared by x̂0
𝑖
and x̂𝑖 . The graphs

were queried to generate O (log𝐿) ≤ 500 negative labels for each

𝑖 ∈ [𝑁] as: (a) ˆN𝑥
𝑖

=
{
𝑙 : 𝑗 ∈ ANNS

𝑥 (v𝑖), 𝑦 𝑗𝑙 = +1, 𝑦𝑖𝑙 = −1
}
, and

(b)
ˆN𝜇

𝑖
=

{
𝑙 : 𝜇𝜇𝜇0

𝑙
∈ ANNS

𝜇 (v𝑖), 𝑦𝑖𝑙 = −1
}
. Adding O (log𝐿) ≤ 50

random negatives to the shortlist (to account for minor distortions

between v𝑖 and x̂𝑖) increased prediction accuracy.

Astec’s shortlisting strategy could recall 5% more relevant la-

bels and the overall predictions could be 13% more accurate than

Slice. Theorem 1 indicates that it was justified to generate ANNS

shortlists using v𝑖 rather than the final features, i.e. x̂𝑖 . This was
also empirically validated as more than 87% overlap was observed

between the label shortlists computed on v𝑖 and those computed

on x̂𝑖 . Astec’s negative sampling step incurs a cost of 𝑂 (𝑁𝐷 log𝐿),
assuming 𝑁 ≤ 𝐿O(1)

and took only a few minutes on most datasets

and at most 2 hours on the AmazonTitles and Q2B datasets with up

to 3 million labels. Note that the shortlist could be further extended

http://manikvarma.org/pubs/dahiya21.pdf

with the labels selected based on explicit label features, however

label features are beyond the scope of Astec.

Theorem 1. Let 𝜆 be the spectral norm of R, P𝑙 = {𝑖 |𝑦𝑖𝑙 = +1} be
the set of positive training points for the label 𝑙 , 𝜖𝑙 = (1+𝜆

√
|P𝑙 |)2−1,

and 𝜇𝜇𝜇𝑙 be the label representation that could have been computed
using final features as 𝜇𝜇𝜇𝑙 =

�̂�𝜇𝜇𝑙
∥�̂�𝜇𝜇𝑙 ∥2

where 𝜇𝜇𝜇𝑙 = 1

|P𝑙 |
∑
𝑖∈P𝑙

x̂𝑖 and

x̂𝑖 = Z(x). Then: (a) ∥x̂𝑖 − v𝑖 ∥2 ≤ 𝜆 ∥v𝑖 ∥2 ∀𝑖 , i.e. the final and
intermediate features for any document can be brought arbitrarily

close by restricting 𝜆; and (b)
𝐶 (v𝑖 ,𝜇𝜇𝜇0𝑙)
1+𝜖𝑙 ≤ 𝐶 (x̂𝑖 , 𝜇𝜇𝜇𝑙) ≤ 𝐶 (v𝑖 , 𝜇𝜇𝜇0𝑙)+𝜖𝑙 , i.e.

the cosine similarity𝐶 (a, b) := a⊤b
∥a∥

2
∥b∥

2

used in the ANNS algorithm
to determine the similarity between any document 𝑖 and label 𝑙 can
also be made arbitrarily close between the intermediate and final
representations by restricting 𝜆, the spectral norm of R. [Please refer
to A.6 in the supplementary material for a proof.]

Module III: Astec uses a final feature representation of the form

x̂ := Z(x) = v+Δv, where v is shared withZ0
and Δv = ReLU(Rv)

for a residual matrix R. Note that R is distinct from the residual

matrix R0 used inZ0
. Since 𝐷2 ≪ 𝑉𝐷 , this introduced a negligible

increase in model parameters and computational complexity and

Δv could be computed in under 10 𝜇𝑠 on a CPU thereby meeting the

low-latency constraints. The spectral norm of Rwas restricted to be

no greater than 𝜆 ≤ 1 to ensure that feature representations offered

byZ did not lie far away from those offered byZ0
(see Theorem 1).

Prediction accuracy was observed to degrade if the spectral norm

was not restricted or if the residual block was replaced by a fully

connected block [32] since such steps allowed the final features to

drift away from the intermediate features.

Module IV: Astec adopts the high capacity 1-vs-All classifier

model and learns a 𝐷-dimensional classifier per label. Thus, its

classifier is parametrized as W = [w1, . . . ,w𝐿] ∈ R𝐷×𝐿
. The

classifier and residual block R present in Z were jointly trained

in 𝑂 (𝑁𝐷 log𝐿) time by restricting training to the positive and

shortlisted negative labels for each data point. Specifically, for any

𝑖 ∈ [𝑁], let P𝑖 := {𝑙 : 𝑦𝑖𝑙 = +1} be the set of positive labels of the
data point,

ˆN𝑖 = ˆN𝜇

𝑖
∪ ˆN𝑧

𝑖
be the negative labels shortlisted in

Module II and let
ˆS𝑖 := ˆN𝑖 ∪ P𝑖 . Then the approximate objective

argminR,W
ˆL(R,W) was solved where

ˆL(R,W) =
𝑁∑
𝑖=1

∑
𝑙 ∈ ˆS𝑖

log

(
1 + exp

(
−𝑦𝑖𝑙 ·w⊤

𝑙
x̂𝑖
))
,

subject to the constraint supu≠0 ∥Ru∥2 /∥u∥2 ≤ 𝜆, where W =

[w1, . . . ,w𝐿] ∈ R𝐷×𝐿
are the 1-vs-All classifiers and x̂𝑖 = Z(x𝑖).

This formulation could be optimized efficiently using the Adam

optimizer on a single P40 GPU in 0.25–5 hours on the datasets

considered in this paper.

Re-ranking the labels: Astec improves its accuracy by learning

a novel re-ranker as follows. Astec’s predictions ŷ𝑖 ∈ {−1, +1}𝐿
were obtained for each training point 𝑖 . Excluding the true positives

yielded a shortlist of negative labels that Astec found the most

confusing for each point. A re-ranker was then trained to eliminate

these mis-predictions by optimizing argminZ̃,W̃
˜L(Z̃, W̃) where

˜L(Z̃, W̃) =
𝑁∑
𝑖=1

∑
𝑙 ∈S̃𝑖

log

(
1 + exp

(
−𝑦𝑖𝑙 · w̃⊤

𝑙
x̃𝑖
))
,

where S̃𝑖 = {𝑙 : 𝑦𝑖𝑙 = +1} ∪ {𝑙 : 𝑦𝑖𝑙 = +1}, x̃𝑖 = Z̃(x𝑖) and Z̃ had

an architecture similar to Z but with independent parameters Ẽ, R̃.
This increased accuracy by 1–3% with comparatively larger gains

on larger datasets, with only a 10–20% increase in training time.

Log-time prediction: Astec meets the latency requirements

of online short text applications on even the largest datasets by

making predictions in𝑂 (𝐷2 +𝐷 log𝐿) time. Given a test document

x ∈ R𝑉 , the 𝑂 (log𝐿) most relevant labels
ˆS := N𝜇 ∪ N𝑥

along

with their base similarity scores 𝑠𝑙 (v) were shortlisted using v :=

ReLU

(∑𝑉
𝑡=1 𝑥𝑡 · e𝑡

)
∈ R𝐷 . Next, the final features x̂ = Z(x) and

1-vs-All classifiers were used to yield scores 𝑦𝑙 = 𝛼𝜎 (w⊤
𝑙
x̂) + (1 −

𝛼)𝜎 (𝑠𝑙 (v)) for shortlisted labels 𝑙 ∈ ˆS and 𝑦𝑙 = 0 otherwise where

𝜎 is the sigmoid function and 𝛼 ∈ [0, 1] is a hyperparameter. Final

predictions were given by linearly combining the re-ranker scores

𝑦𝑙 = 𝜎 (w̃⊤
𝑙
x̃) with the base similarity scores as 𝑦𝑙 = 𝛽𝑦𝑙 + (1− 𝛽)𝑦𝑙

if 𝑙 ∈ ˆS and 𝑦𝑙 = 0 otherwise, using a hyper-parameter 𝛽 ∈ [0, 1].

5 EXPERIMENTS
Datasets: Results are presented on publically available benchmark

short text datasets with up to 3 million labels for predicting fre-

quently bought together Amazon items based on just the product

title (AmazonTitles-670K and AmazonTitles-3M) as well as using a

Wikipedia article’s title to predict it’s Wikipedia tags (WikiTitles-

500K) as well as its related Wikipedia articles (WikiSeeAlsoTitles-

350K). All datasets are available on the ExtremeClassification Repos-

itory [6]. Note that, even though the focus of this paper is on short

text applications and Astec has been designed keeping their specific

requirements in mind, results on benchmark long text datasets are

presented in the supplementary material for completeness. Results

are also presented on a proprietary Bing dataset with 3 million

labels and 21 million training points for matching user queries to

advertiser bid phrases (Q2B-3M). The dataset was created by min-

ing Bing’s click logs where each user’s query was treated as a data

point and clicked advertiser bid phrases became its labels. Table 3

in the supplementary material presents the data set statistics.

XML baselines: The focus of this paper is on comparing Astec

to MACH [32] and Slice [19] as they have been specifically de-

signed for short text applications. Astec was also compared to other

leading deep extreme classifiers including XML-CNN [28], XTrans-

formers [11] and AttentionXML [56]. Furthermore, for the sake of

completeness, results are presented for non-deep extreme classi-

fiers including XT [50], DiSMEC [2], PfastreXML [20], Parabel [41],

Bonsai [24] and AnneXML [47]. Implementations of all the baseline

algorithms were provided by their authors. The hyper-parameters

of these algorithms were set as suggested by their authors wherever

applicable and by fine-grained validation otherwise. Results are

only presented for those datasets to which an implementation could

scale. Results could therefore not be reported for XTransformers

as it could not be trained on any of the datasets on a single GPU

in a week. As is customary in extreme classification, results are

http://manikvarma.org/pubs/dahiya21.pdf
http://manikvarma.org/pubs/dahiya21.pdf
http://manikvarma.org/pubs/dahiya21.pdf

Table 1: Astec could be significantly more accurate and scal-
able than leading deep extreme classifiers including MACH,
XML-CNN and AttentionXML on publicly available bench-
mark datasets. Astec was also found to outperform leading
methods designed to match user queries to bid phrases on
the Q2B-3M dataset. Results for other methods and metrics
are presented in the supplementary material.

Method P@1 P@3 P@5 PSP@3 PSP@5 Training
Time (hr)

Q2B-3M

Astec 73.37 33.91 21.67 85.13 90.42 15.59

Parabel 54.29 27.15 17.94 61.66 68.61 3.52

Slice+CDSSM 53.23 27.53 18.56 64.51 74.14 4.71

Seq2Seq 28.25 13.06 8.02 17.59 15.42 -

Simrank++ 52.70 29.69 19.33 41.67 39.36 25.00

AmazonTitles-670K

Astec 39.97 35.73 32.59 29.79 31.71 1.29

Astec-3 40.63 36.22 33.00 30.17 32.07 3.85

MACH 34.92 31.18 28.56 23.14 25.79 6.41

XML-CNN 35.02 31.37 28.45 24.93 26.84 23.52

Slice+fastText 33.85 30.07 26.97 24.15 25.81 0.22

AttentionXML 37.92 33.73 30.57 26.43 28.39 37.50

Parabel 38.00 33.54 30.10 25.57 27.61 0.09

Bonsai 38.46 33.91 30.53 26.19 28.41 0.53

DiSMEC 38.12 34.03 31.15 25.46 28.67 11.74

AmazonTitles-3M

Astec 47.64 44.66 42.36 18.59 20.60 4.38

Astec-3 48.74 45.70 43.31 18.89 20.94 13.04

MACH 37.10 33.57 31.33 8.61 9.46 40.48

SLICE+fastText 35.39 33.33 31.74 13.37 14.94 0.64

Parabel 46.42 43.81 41.71 15.58 17.55 1.54

Bonsai 46.89 44.38 42.30 16.66 18.75 9.90

WikiSeeAlsoTitles-350K

Astec 20.42 14.44 11.39 12.05 13.94 1.47

Astec-3 20.61 14.58 11.49 12.16 14.04 4.36

MACH 14.79 9.57 7.13 7.02 7.54 7.44

XML-CNN 17.75 12.34 9.73 9.72 11.15 14.25

Slice+fastText 18.13 12.87 10.29 10.78 12.74 0.22

AttentionXML 15.86 10.43 8.01 7.20 8.15 30.44

Parabel 17.24 11.61 8.92 8.83 9.96 0.06

Bonsai 17.95 12.27 9.56 9.68 11.07 0.46

DiSMEC 16.61 11.57 9.14 9.19 10.74 6.62

WikiTitles-500K

Astec 46.01 25.62 18.18 18.59 18.95 4.45

Astec-3 46.60 26.03 18.50 18.90 19.30 13.04

MACH 33.74 15.62 10.41 8.98 8.35 23.65

XML-CNN 43.45 23.24 16.53 14.74 14.98 55.21

Slice+fastText 28.07 16.78 12.28 14.69 15.33 0.54

AttentionXML 42.89 22.71 15.89 14.32 14.22 102.43

Parabel 42.50 23.04 16.21 16.12 16.16 0.34

Bonsai 42.60 23.08 16.25 16.85 16.90 2.94

DiSMEC 39.89 21.23 14.96 15.15 15.43 23.94

presented for not only Astec but also an ensemble with 3 learners

referred to as Astec-3. Astec’s hyper-parameters and their settings

on various datasets are discussed in the supplementary material.

Bing baselines: The online flight results revealed the gains

that Astec was able to achieve when added to a large ensemble

of state-of-the-art techniques currently running in production on

Bing including many leading techniques for query synthesis (con-

strained and unconstrained), graph based techniques (graph neural

networks, random walks, sessions based methods, etc.), embedding

methods (Siamese networks and two-tower models), extreme clas-

sifiers as well as techniques that leverage additional information

(refer to Section 2). Offline results for some of these techniques

such as Simrank++ [18] and a BERT based sequence-to-sequence

constrained synthesis model [13, 27] are presented on the Q2B-3M

dataset for matching queries to bid phrases.

Evaluation metrics: Performance was evaluated using prec-

ision@𝑘 (P@𝑘), and propensity scored precision@𝑘 (PSP@𝑘) which

have been widely used in the extreme classification literature [2, 20].

Results on additional metrics such as nDCG@𝑘 (N@𝑘) and propen-

sity scored nDCG@𝑘 (PSN@𝑘) have been included in supplemen-

tary material which also contains the definitions of all the metrics.

All training times have been reported on a 24-core Intel Xeon 2.6

GHz machine with a single Nvidia P40 GPU unless stated otherwise.

Table 1 - Offline results: Astec’s main competitors were Slice

and MACH as they are extreme classifiers that have been developed

for low-latency short text applications since their features could be

extracted in milliseconds on a CPU while all other architectures re-

quired a GPU. Slice is not a deep learning method and was therefore

trained on the same FastText embeddings that were used to initialize

Astec. Nevertheless, Astec was 2.29-17.94% more accurate than Slice

and 5.05-12.27% more accurate than MACH on the publically avail-

able Repository datasets and 20.14% more accurate than Slice on the

Bing Q2B-3M dataset. Unfortunately, MACH could not be trained

on the Q2B-3M dataset in a week on a single GPU whereas Astec

could be trained in 13 hours. On the Repository datasets, Astec was

5-9× faster to train than MACH. Similarly, none of the other deep

extreme classifiers could be trained on the AmazonTitles-3M and

Q2B-3M datasets. On the smaller datasets, Astec was 2.05-4.56%

more accurate and 9-29× faster to train than AttentionXML and

XML-CNN respectively. Furthermore, Astec was at least 19% more

accurate than all other methods on the Bing Q2B-3M dataset includ-

ing SimRank++ and a BERT based sequence-to-sequence model

that had been specifically designed for matching queries to bid

phrases. These results demonstrate that Astec’s features could be

learnt accurately from limited training data and that the DeepXML

framework enabled Astec to be significantly more scalable than all

other deep extreme classifiers. Finally, for the sake of completeness,

Astec was compared to non-deep learning extreme classifiers on

the Repository datasets where it could be up to 6.12% more accurate

and this increased marginally to 6.77% for the Astec-3 ensemble.

Online results from Bing flights: Astec was able to efficiently

train in 20 hours on 4×P40 GPUs on various Bing internal datasets

with up to 62 million labels that were far beyond the scaling capa-

bilities of all other deep extreme classifiers. Furthermore, Astec’s

features could be extracted in microseconds on a CPU and its overall

predictions made in a few milliseconds allowing it to make billions

of predictions per day at peak rates of 120,000 queries per second on

commodity hardware. This allowed Astec to be flighted for multiple

short text applications on Bing with extremely low-latencies and

high-throughputs including text ads, product ads, rich ads, native

ads, retail product recommendation, news recommendation, per-

sonalized query recommendation, etc. Unfortunately, due to space

http://manikvarma.org/pubs/dahiya21.pdf
http://manikvarma.org/pubs/dahiya21.pdf
http://manikvarma.org/pubs/dahiya21.pdf
http://manikvarma.org/pubs/dahiya21.pdf

Table 2: Astec’s predicted bid phrases for the user query
"what is diabetes type 2" are more accurate and diverse as
compared to leading methods (M1–M3) in Bing. All mispre-
dictions have been italicized.

Method Predictions

Astec definition diabetes type 2, what causes type 2 diabetes,

do i have type 2 diabetes, what is type 2 diabetes mellitus

what are the causes of diabetes type 2, type 2 diabetes

M1 what is type ii diabetes, whats type 2 diabetes

M2 type 2 diabetes

M3 what is type 2 diabetes, what is type 1 and type 2 diabetes,

type 2 diabetes, what is email marketing, what is ptsd2
what is anemia, what is radiation therapy

constraints, online results when Astec was added to the ensemble

of state-of-the-art techniques currently in production can only be

presented for just two of these applications.

Personalized ads: Billions of users were shown personalized

ads as they surfed the web based on their browsing history in the

first application. Each user’s intent was represented by the set of

queries that the user could have potentially asked on Bing to reach

the last 𝐾 webpages that they had browsed. Astec was used to

predict the set of Bing queries from each visited webpage’s title in

milliseconds. A GRU was used to model the user’s last 𝐾 states in

near real time. The GRU was then used to select a single predicted

query that was passed through the Bing pipeline to show ads to the

user. Human expert evaluation revealed that Astec increased the

number of excellent predictions by more than 20% while reducing

the number of fair and poor predictions by more than 10% as com-

pared to the ensemble in production containing leading extreme

classification, deep learning and IR techniques. Astec was also able

to achieve 100% coverage when deployed online by making pre-

dictions for all visited webpages for all users within the latency

and throughput constraints. This allowed Astec to increase the

click-through-rate by 6.5% and revenue by more than 5%. Table 8

in the supplementary material shows examples comparing Astec’s

predictions to those of traditional approaches and demonstrates

Astec’s benefits over the state-of-the-art.

Matching queries to bid phrases: Astec treated each user’s

query as input and each advertiser bid phrase as a separate label

in order to predict the set of bid phrases that could be matched

to the user’s query to show ads on Bing. Astec’s offline accuracy

was 19% higher than that of other approaches (see Table 1). This

translated into an increase of 1.6% in revenue per thousand queries,

2.9% in match quality and 8.6% increase in query coverage over a

large ensemble of state-of-the-art techniques when deployed online.

Table 2 lists Astec’s predicted bid phrases for the query “what is

diabetes type”. As can be seen, Astec’s predictions could be more

accurate and diverse than those of other methods which could fixate

on the phrase “what is” and thereby make many mispredictions.

Ablations: Table 6 in the supplementary material presents the

ablation results for each module validating Astec’s design choices.

First, much progress has been made in both designing and speeding

up feature architectures such as BERT [13], Roberta [30], etc. that

can easily be incorporated into the DeepXML framework, if desired.

Unfortunately, doing so did not lead to accuracy gains on the short

text extreme datasets and Astec’s features were demonstrated to be

at least 2% more accurate than those based on CNNs [28], MLPs [32]

and BERT [13]. This indicates that Astec’s features were more suit-

able for short text extreme classification and that more research is

required on how to train and fine-tune transformer and other archi-

tectures when many features and labels have very limited training

data. Second, training on Astec’s surrogate task was demonstrated

to be 1-4% more accurate than training using self-supervision, label

selection or label low-rank projection indicating the suitability of

label clustering and the importance of a well designed surrogate

task. Third, it was demonstrated that the negative sampling strategy

proposed in Astec could be 13% more accurate than the strategy

in Slice. This further highlights the differences between Astec and

Slice and indicates that, even if Slice could somehow have been

trained jointly along with Astec’s features, it would still have been

significantly inferior to Astec. Finally, it was demonstrated that

Astec’s performance could not be further improved by replacing

its classifier with alternatives such as DiSMEC or Parabel.

State-of-the-art algorithms in the DeepXML framework:
DeepXML could be used to analyze and improve leading deep ex-

treme classifiers thereby demonstrating its generality and useful-

ness. For instance, both XML-CNN and MACH could be recast into

the DeepXML framework by replacing Astec’s feature architecture

by their CNN or MLP features. This led to accuracy gains of 1.8%

and 2.4% and training speedups of 10× and 5× for XML-CNN and

MACH respectively (see Table 4 in the supplementary material).

Note that the original MACH algorithm stops training after the

first DeepXML module, i.e., after it has learnt its MLP features on

the surrogate task, and therefore compensates by learning a large

ensemble. Casting MACH into DeepXML allowed it to improve

accuracy by fine-tuning its features for the extreme task at hand

while speeding up training by learning just a single learner rather

than an ensemble of 32 learners. Similarly, DeepXML increased

XML-CNN’s accuracy by fine-tuning its CNN features through the

residual block in the third module and speeded up training by re-

placing its fully connected output layer with 𝑂 (𝐿) complexity by a

1-vs-some classifier with 𝑂 (log𝐿) complexity in the fourth mod-

ule. It should be reiterated that Astec’s performance continued to

remain superior to that of the improved MACH and XML-CNN.

Vision task: While the primary focus of this paper is on short

text applications, DeepXML was also applied to a vision task to

demonstrate its ease-of-use and generality. Table 9 in the supple-

mentary material presents results for classifying a retail item’s

image into its product categories from the AmazonCat-13K dataset

available on the Repository. DeepXML made only a minor modifica-

tion in Astec by replacing its feature architecture by ResNet18 [16]

while leaving everything else unchanged. Pre-trained ResNet18

features were also used to train Slice, MACH, Parabel and DiS-

MEC. Nevertheless, DeepXML was 4-29% more accurate than these

methods thereby demonstrating its flexibility.

6 CONCLUSIONS
This paper developed the modular DeepXML framework that was

used to: (a) derive the Astec algorithm for low-latency short text

http://manikvarma.org/pubs/dahiya21.pdf
http://manikvarma.org/pubs/dahiya21.pdf
http://manikvarma.org/pubs/dahiya21.pdf
http://manikvarma.org/pubs/dahiya21.pdf
http://manikvarma.org/pubs/dahiya21.pdf

applications; (b) analyse and improve leading deep extreme classi-

fiers; and (c) provide a convenient and flexible tool for practitioners

to plug in components of their choice with minimal effort for tack-

ling diverse applications. Furthermore, Astec was demonstrated to

be significantly more accurate and scalable than leading extreme

classifiers for short text documents and could lead to significant

gains in various online metrics for multiple applications on Bing.

ACKNOWLEDGMENTS
The authors thank Purushottam Kar, Aditya Kusupati, Harsha Vard-

han Simhadri, Yash Garg, and Risi Thonangi for helpful feedback.

REFERENCES
[1] R. Agrawal, A. Gupta, Y. Prabhu, and M. Varma. 2013. Multi-label learning

with millions of labels: Recommending advertiser bid phrases for web pages. In

WWW.

[2] R. Babbar and B. Schölkopf. 2017. DiSMEC: Distributed Sparse Machines for

Extreme Multi-label Classification. In WSDM.

[3] R. Babbar and B. Schölkopf. 2019. Data scarcity, robustness and extreme multi-

label classification. ML (2019).

[4] X. Bai, E. Ordentlich, Y. Zhang, A. Feng, A. Ratnaparkhi, R. Somvanshi, and A.

Tjahjadi. 2018. Scalable Query N-Gram Embedding for Improving Matching and

Relevance in Sponsored Search. In KDD.
[5] E. J. Barezi, I. D. W., P. Fung, and H. R. Rabiee. 2019. A Submodular Feature-Aware

Framework for Label Subset Selection in Extreme Classification Problems. In

NAACL.
[6] K. Bhatia, K. Dahiya, H. Jain, A. Mittal, Y. Prabhu, and M. Varma. 2016. The Ex-

treme Classification Repository: Multi-label Datasets & Code. http://manikvarma.

org/downloads/XC/XMLRepository.html

[7] K. Bhatia, H. Jain, P. Kar, M. Varma, and P. Jain. 2015. Sparse Local Embeddings

for Extreme Multi-label Classification. In NeurIPS.
[8] W. Bi and J. Kwok. 2013. Efficient multi-label classification with many labels. In

ICML.
[9] A. Broder, P. Ciccolo, E. Gabrilovich, V. Josifovski, D. Metzler, L. Riedel, and J.

Yuan. 2009. Online Expansion of Rare Queries for Sponsored Search. In WWW.

[10] I. Chalkidis, M. Fergadiotis, P. Malakasiotis, N. Aletras, and I. Androutsopou-

los. 2019. Extreme Multi-Label Legal Text Classification: A case study in EU

Legislation. In NAACL.
[11] W.-C. Chang, Yu H.-F., K. Zhong, Y. Yang, and I.-S. Dhillon. 2020. Taming Pre-

trained Transformers for Extreme Multi-label Text Classification. In KDD.
[12] W-C. Chang, F.-X. Yu, Y.-W. Chang, Y. Yang, and S. Kumar. 2020. Pre-training

Tasks for Embedding-based Large-scale Retrieval. In ICLR.
[13] J. Devlin, M. W. Chang, K. Lee, and K. Toutanova. 2019. BERT: Pre-training of

deep bidirectional transformers for language understanding. NAACL (2019).

[14] J. Gao, S. Xie, X. He, and A. Ali. 2012. Learning Lexicon Models from Search Logs

for Query Expansion. In EMNLP.
[15] C. Guo, A. Mousavi, X. Wu, D.-N. Holtmann-Rice, S. Kale, S. Reddi, and S. Kumar.

2019. Breaking the Glass Ceiling for Embedding-Based Classifiers for Large

Output Spaces. In NeurIPS.
[16] K. He, X. Zhang, S. Ren, and J. Sun. 2016. Deep Residual Learning for Image

Recognition. In CVPR.
[17] P. S. Huang, X. He, J. Gao, L. Deng, A. Acero, and L. Heck. 2013. Learning Deep

Structured Semantic Models for Web Search using Clickthrough Data. In CIKM.

[18] A. Ioannis, G. M. Hector, and C. C. Chi. 2008. Simrank++: Query Rewriting

through Link Analysis of the Click Graph. In WWW.

[19] H. Jain, V. Balasubramanian, B. Chunduri, and M. Varma. 2019. Slice: Scalable

Linear Extreme Classifiers trained on 100 Million Labels for Related Searches. In

WSDM.

[20] H. Jain, Y. Prabhu, and M. Varma. 2016. Extreme Multi-label Loss Functions for

Recommendation, Tagging, Ranking and Other Missing Label Applications. In

KDD.
[21] K. Jasinska, K. Dembczynski, R. Busa-Fekete, K. Pfannschmidt, T. Klerx, and E.

Hullermeier. 2016. Extreme F-measure Maximization using Sparse Probability

Estimates. In ICML.
[22] Y. Jernite, A. Choromanska, and D. Sontag. 2017. Simultaneous Learning of Trees

and Representations for Extreme Classification and Density Estimation. In ICML.
[23] A. Joulin, E. Grave, P. Bojanowski, and T. Mikolov. 2017. Bag of Tricks for Efficient

Text Classification. In EACL.
[24] S. Khandagale, H. Xiao, and R. Babbar. 2019. Bonsai - Diverse and Shallow Trees

for Extreme Multi-label Classification. Machine Learning (2019).

[25] W. Krichene, N. Mayoraz, S. Rendle, L. Zhang, X. Yi, L. Hong, E. Chi, and J.

Anderson. 2019. Efficient training on very large corpora via gramian estimation.

In ICLR.

[26] M. C. Lee, B. Gao, and R. Zhang. 2018. Rare Query Expansion Through Generative

Adversarial Networks in Search Advertising. In KDD.
[27] Y. Lian, Z. Chen, J. Hu, K. Zhang, C. Yan, M. Tong, W. Han, H. Guan, Y. Li, Y.

Cao, Y. Yu, Z. Li, X. Liu, and Y. Wang. 2019. An end-to-end Generative Retrieval

Method for Sponsored Search Engine -Decoding Efficiently into a Closed Target

Domain. CoRR (2019).

[28] J. Liu, W. Chang, Y. Wu, and Y. Yang. 2017. Deep Learning for Extreme Multi-label

Text Classification. In SIGIR.
[29] X. Liu, P. He, W. Chen, and J. Gao. 2019. Multi-Task Deep Neural Networks for

Natural Language Understanding. In ACL.
[30] Y. Liu, M. Ott, N. Goyal, J. Du, M. Joshi, D. Chen, O. Levy, M. Lewis, L. Zettlemoyer,

and V. Stoyanov. 2019. Roberta: A robustly optimized bert pretraining approach.

CoRR (2019).

[31] A. Y. Malkov and D. A. Yashunin. 2016. Efficient and robust approximate nearest

neighbor search using Hierarchical Navigable Small World graphs. CoRR (2016).

[32] T. K. R. Medini, Q. Huang, Y. Wang, V. Mohan, and A. Shrivastava. 2019. Extreme

Classification in Log Memory using Count-Min Sketch: A Case Study of Amazon

Search with 50M Products. In NeurIPS.
[33] Q. Mei, D. Zhou, and K. Church. 2008. Query Suggestion Using Hitting Time. In

CIKM.

[34] T. Mikolov, I. Sutskever, K. Chen, G. Corrado, and J. Dean. 2013. Distributed

Representations of Words and Phrases and Their Compositionality. In NeurIPS.
[35] P. Mineiro and N. Karampatziakis. 2015. Fast Label Embeddings via Randomized

Linear Algebra. In ECML/PKDD.
[36] A. Mittal, K. Dahiya, S. Agrawal, D. Saini, S. Agarwal, P. Kar, and M. Varma. 2021.

DECAF: Deep Extreme Classification with Label Features. In WSDM.

[37] A. Mittal, N. Sachdeva, S. Agrawal, S. Agarwal, P. Kar, and M. Varma. 2021.

ECLARE: Extreme Classification with Label Graph Correlations. In TheWebConf.
[38] T. Miyato, T. Kataoka, M. Koyama, and Y. Yoshida. 2018. Spectral Normalization

for Generative Adversarial Networks. CoRR (2018).

[39] S. J. Pan and Q. Yang. 2010. A Survey on Transfer Learning. TKDE (2010).

[40] Y. Prabhu, A. Kag, S. Gopinath, K. Dahiya, S. Harsola, R. Agrawal, and M. Varma.

2018. Extreme multi-label learning with label features for warm-start tagging,

ranking and recommendation. In WSDM.

[41] Y. Prabhu, A. Kag, S. Harsola, R. Agrawal, and M. Varma. 2018. Parabel: Parti-

tioned label trees for extreme classification with application to dynamic search

advertising. In WWW.

[42] Y. Prabhu and M. Varma. 2014. FastXML: A Fast, Accurate and Stable Tree-

classifier for eXtreme Multi-label Learning. In KDD.
[43] A .S Rawat, J. J. Chen, F. Yu, Suresh A. .T, and S. Kumar. 2019. Sampled softmax

with random fourier features. In NeurIPS.
[44] N. Reimers and I. Gurevych. 2019. Sentence-bert: Sentence embeddings using

siamese bert-networks. EMNLP.
[45] D. Saini, A.K. Jain, Kushal. Dave, J. Jiao, A. Singh, R. Zhang, and M. Varma.

2021. GalaXC: Graph neural networks with labelwise attention for extreme

classification. In TheWebConf.
[46] W. Siblini, P. Kuntz, and F. Meyer. 2018. CRAFTML, an Efficient Clustering-based

Random Forest for Extreme Multi-label Learning. In ICML.
[47] Y. Tagami. 2017. AnnexML: Approximate Nearest Neighbor Search for Extreme

Multi-label Classification. In KDD.
[48] Y. X. Wang, D. Ramanan, and M. Hebert. 2017. Learning to Model the Tail. In

NeurIPS.
[49] T. Wei, W. W. Tu, and Y. F. Li. 2019. Learning for Tail Label Data: A Label-Specific

Feature Approach. In IJCAI.
[50] M. Wydmuch, K. Jasinska, M. Kuznetsov, R. Busa-Fekete, and K. Dembczynski.

2018. A no-regret generalization of hierarchical softmax to extreme multi-label

classification. In NeurIPS.
[51] H. Ye, Z. Chen, D.-H. Wang, and B. D. Davison. 2020. Pretrained Generalized

Autoregressive Model with Adaptive Probabilistic Label Clusters for Extreme

Multi-label Text Classification. In ICML.
[52] C. Yejin, F. Marcus, G. Evgeniy, Vanja. J., M. Mauricio, and P. Bo. 2010. Using

Landing Pages for Sponsored Search Ad Selection. In WWW.

[53] E.H. I. Yen, X. Huang, K. Zhong, P. Ravikumar, and I. S. Dhillon. 2016. PD-

Sparse: A Primal and Dual Sparse Approach to Extreme Multiclass and Multilabel

Classification. In ICML.
[54] I. Yen, S. Kale, F. Yu, D. Holtmann R., S. Kumar, and P. Ravikumar. 2018. Loss

Decomposition for Fast Learning in Large Output Spaces. In ICML.
[55] X. Yi, J. Yang, L. Hong, D. Z. Cheng, L. Heldt, A. Kumthekar, Z. Zhao, L. Wei, and

E. Chi. 2019. Sampling-Bias-Corrected Neural Modeling for Large Corpus Item

Recommendations. In RecSys.
[56] R. You, S. Dai, Z. Zhang, H. Mamitsuka, and S. Zhu. 2019. AttentionXML: Extreme

Multi-Label Text Classification with Multi-Label Attention Based Recurrent

Neural Networks. In NeurIPS.
[57] Z. Yuan, Z. Guo, Yu X., X. Wang, and T. Yang. 2020. Accelerating Deep Learning

with Millions of Classes. In ECCV.
[58] H. Zhou,M. Huang, Y.Mao, C. Zhu, P. Shu, and X. Zhu. 2019. Domain-Constrained

Advertising Keyword Generation. In WWW.

http://manikvarma.org/downloads/XC/XMLRepository.html
http://manikvarma.org/downloads/XC/XMLRepository.html

	Abstract
	1 Introduction
	2 Related Work
	3 The DeepXML framework
	3.1 Module I: Intermediate representation
	3.2 Module II: Negative sampling
	3.3 Module III: Transfer learning
	3.4 Module IV: Classifier learning

	4 The Astec algorithm
	5 Experiments
	6 Conclusions
	Acknowledgments
	References

