
DECAF: Deep Extreme Classification with Label Features
Anshul Mittal

Kunal Dahiya

me@anshulmittal.org

kunalsdahiya@gmail.com

IIT Delhi

India

Sheshansh Agrawal

Deepak Saini

sheshansh.agrawal@microsoft.com

desaini@microsoft.com

Microsoft Research

India

Sumeet Agarwal

sumeet@iitd.ac.in

IIT Delhi

India

Purushottam Kar

purushot@cse.iitk.ac.in

IIT Kanpur

Microsoft Research

India

Manik Varma

manik@microsoft.com

Microsoft Research

IIT Delhi

India

ABSTRACT
Extreme multi-label classification (XML) involves tagging a data

point with its most relevant subset of labels from an extremely

large label set, with several applications such as product-to-product

recommendation with millions of products. Although leading XML

algorithms scale to millions of labels, they largely ignore label meta-

data such as textual descriptions of the labels. On the other hand,

classical techniques that can utilize label metadata via represen-

tation learning using deep networks struggle in extreme settings.

This paper develops theDECAF algorithm that addresses these chal-

lenges by learning models enriched by label metadata that jointly

learn model parameters and feature representations using deep

networks and offer accurate classification at the scale of millions

of labels. DECAF makes specific contributions to model architec-

ture design, initialization, and training, enabling it to offer up to

2-6% more accurate prediction than leading extreme classifiers on

publicly available benchmark product-to-product recommendation

datasets, such as LF-AmazonTitles-1.3M. At the same time, DECAF
was found to be up to 22× faster at inference than leading deep ex-

treme classifiers, which makes it suitable for real-time applications

that require predictions within a few milliseconds. The code for

DECAF is available at the following URL

https://github.com/Extreme-classification/DECAF.

CCS CONCEPTS
• Computing methodologies→Machine learning; Supervised
learning by classification.

KEYWORDS
Extreme multi-label classification; product to product recommen-

dation; label features; label metadata; large-scale learning

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

WSDM ’21, March 8–12, 2021, Virtual Event, Israel
© 2021 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 978-1-4503-8297-7/21/03. . . $15.00

https://doi.org/10.1145/3437963.3441807

ACM Reference Format:
Anshul Mittal, Kunal Dahiya, Sheshansh Agrawal, Deepak Saini, Sumeet

Agarwal, Purushottam Kar, and Manik Varma. 2021. DECAF: Deep Extreme

Classification with Label Features. In Proceedings of the Fourteenth ACM
International Conference on Web Search and Data Mining (WSDM ’21), March
8–12, 2021, Virtual Event, Israel. ACM, New York, NY, USA, 9 pages. https:

//doi.org/10.1145/3437963.3441807

1 INTRODUCTION
Objective: Extreme multi-label classification (XML) refers to the

task of tagging data points with a relevant subset of labels from

an extremely large label set. This paper demonstrates that XML

algorithms stand to gain significantly by incorporating label meta-

data. The DECAF algorithm is proposed, which could be up to

2-6% more accurate than leading XML methods such as Astec [8],

MACH [23], Bonsai [20], AttentionXML [38], etc, while offering pre-
dictions within a fraction of a millisecond, which makes it suitable

for high-volume and time-critical applications.

Short-text applications: Applications such as predicting re-

lated products given a retail product’s name [23], or predicting

related webpages given a webpage title, or related searches [14],

all involve short texts, with the product name, webpage title, or

search query having just 3-10 words on average. In addition to the

statistical and computational challenges posed by a large set of

labels, short-text tasks are particularly challenging as only a few

words are available per data point. This paper focuses on short-text

applications such as related product and webpage recommendation.

Label metadata: Metadata for labels can be available in various

forms: textual representations, label hierarchies, label taxonomies

[19, 24, 31], or label correlation graphs, and can capture seman-

tic relations between labels. For instance, the Amazon products

(that serve as labels in a product-to-product recommendation task)

“Panzer Dragoon", and “Panzer DragoonOrta" do not share any com-

mon training point but are semantically related. Label metadata can

allow collaborative learning, which especially benefits tail labels.
Tail labels are those for which very few training points are available

and form the majority of labels in XML applications [2, 3, 15]. For

instance, just 14 documents are tagged with the label “Panzer Dra-

goon Orta" while 23 documents are tagged with the label “Panzer

Dragoon" in the LF-AmazonTitles-131K dataset. In this paper, we

will focus on utilizing label text as a form of label metadata.

https://github.com/Extreme-classification/DECAF
https://doi.org/10.1145/3437963.3441807
https://doi.org/10.1145/3437963.3441807
https://doi.org/10.1145/3437963.3441807

DECAF:DECAF learns a separate linear classifier per label based
on the 1-vs-All approach. These classifiers critically utilize label

metadata and require careful initialization since random initializa-

tion [10] leads to inferior performance at extreme scales. DECAF
proposes using a shortlister with large fanout to cut down train-

ing and prediction time drastically. Specifically, given a training

set of 𝑁 examples, 𝐿 labels, and 𝐷 dimensional embeddings being

learnt, the use of the shortlister brings training time down from

O (𝑁𝐷𝐿) to O (𝑁𝐷 log𝐿) (by training only on the O (log𝐿) most

confusing negative labels for every training point), and prediction

time down from O (𝐷𝐿) to O (𝐷 log𝐿) (by evaluating classifiers

corresponding to only the O (log𝐿) most likely labels). An efficient

and scalable two-stage strategy is proposed to train the shortlister.

Comparison with state-of-the-art: Experiments conducted

on publicly available benchmark datasets revealed that DECAF
could be 5% more accurate than the leading approaches such as

DiSMEC [2], Parabel [29], Bonsai [20] AnnexML [33], etc, which
utilize pre-computed features. DECAF was also found to be 2-6%

more accurate than leading deep learning-based approaches such

as Astec [8], AttentionXML [38] and MACH [23] that jointly learn

feature representations and classifiers. Furthermore, DECAF could

be up to 22× faster at prediction than deep learning methods such

as MACH and AttentionXML.

Contributions: This paper presents DECAF, a scalable deep

learning architecture for XML applications that effectively utilize

label metadata. Specific contributions are made in designing a short-

lister with a large fanout and a two-stage training strategy. DECAF
also introduces a novel initialization strategy for classifiers that

leads to accuracy gains, more prominently on data-scarce tail la-

bels. DECAF scales to XML tasks with millions of labels and makes

predictions significantly more accurate than state-of-the-art XML

methods. Even on datasets with more than a million labels, DECAF
can make predictions in a fraction of a millisecond, thereby making

it suitable for real-time applications.

2 RELATEDWORK
Summary: XML techniques can be categorized into 1-vs-All, tree,

and embedding methods. Of these, one-vs-all methods such as Slice

[14] and Parabel [29] offer the most accurate solutions. Recent

advances have introduced the use of deep-learning-based represen-

tations. However, these techniquesmostly do not use label metadata.

Techniques such as the X-Transformer [7] that do use label text

either do not scale well with millions of labels or else do not of-

fer state-of-the-art accuracies. The DECAF method presented in

this paper effectively uses label metadata to offer state-of-the-art

accuracies and scale to tasks with millions of labels.

1-vs-All classifiers: 1-vs-All classifiers PPDSparse [36], DiS-

MEC [2], ProXML [3] are known to offer accurate predictions but

risk incurring training and prediction costs that are linear in the

number of labels, which is prohibitive at extreme scales. Approaches

such as negative sampling, PLTs, and learned label hierarchies have

been proposed to speed up training [14, 20, 29, 37], and predic-

tions [17, 27] for 1-vs-All methods. However, they rely on sub-linear

search structures such as nearest-neighbor structures or label-trees

that are well suited for fixed or pre-trained features such as bag-

of-words or FastText [18] but not support jointly learning deep

representations since it is expensive to repeatedly update these

search structures as deep-learned representations keep getting up-

dated across learning epochs. Thus, these approaches are unable to

utilize deep-learned features, which leads to inaccurate solutions.

DECAF avoids these issues by its use of the shortlister which offers

a high recall filtering of labels allowing training and prediction

costs that are logarithmic in the number of labels.

Tree classifiers: Tree-based classifiers typically partition the

label space to achieve logarithmic prediction complexity. In partic-

ular, MLRF [1], FastXML [30], PfastreXML [15] learn an ensemble

of trees where each node in a tree is partitioned by optimizing an

objective based on the Gini index or nDCG. CRAFTML [32] deploys

random partitioning of features and labels to learn an ensemble

of trees. However, such algorithms can be expensive in terms of

training time and model size.

Deep feature representations: Recent works MACH [23], X-

Transformer [7], XML-CNN [22], and AttentionXML [22] have

graduated from using fixed or pre-learned features to using task-

specific feature representations that can be significantly more accu-

rate. However, CNN and attention-based mechanisms were found

to be inaccurate on short-text applications (as shown in [8]) where

scant information is available (3-10 tokens) for a data point. Fur-

thermore, approaches like X-Transformer and AttentionXML that

learn label-specific document representations do not scale well.

Using label metadata: Techniques that use label metadata e.g.

label text include SwiftXML [28]which uses a pre-trainedWord2Vec

[25] model to compute label representations. However, SwiftXML

is designed for warm-start settings where a subset of ground-truth
labels for each test point is already available. This is a non-standard

scenario that is beyond the scope of this paper. [11] demonstrated,

using the GlaS regularizer, that modeling label correlations could

lead to gains on tail labels. Siamese networks [34] are a popu-

lar framework that can learn representations so that documents

and their associated labels get embedded together. Unfortunately,

Siamese networks were found to be inaccurate at extreme scales.

The X-Transformer method [7] uses label text to generate shortlists

to speed up training and prediction. DECAF, on the other hand,

makes much more direct use of label text to train the 1-vs-All la-

bel classifiers themselves and offers greater accuracy compared to

X-Transformer and other XML techniques that also use label text.

3 DECAF: DEEP EXTREME CLASSIFICATION
WITH LABEL FEATURES

Summary: DECAF consists of three components 1) a lightweight

text embedding block suitable for short-text applications, 2) 1-vs-All

classifiers per label that incorporate label text, and 3) a shortlister

that offers a high recall label shortlists for data points, allowing

DECAF to offer sub-millisecond prediction times even with millions

of labels. This section details these components, and an approximate

likelihood model with provable recovery guarantees, using which

DECAF offers a highly scalable yet accurate pipeline for jointly

training text embeddings and classifier parameters.

Notation: Let 𝐿 be the number of labels and𝑉 be the dictionary

size. Each of the 𝑁 training points is presented as (x𝑖 , y𝑖). x𝑖 ∈ R𝑉
is a bag-of-tokens representation for the 𝑖th document i.e. 𝑥𝑖𝑡 is the

TF-IDF weight of token 𝑡 ∈ [𝑉] in the 𝑖th document. y𝑖 ∈ {−1, +1}𝐿

L11 L4

L6

L1

L9L13

Shortlisting (red⇒ relevant label)

L8 L3

L12

L2

L15
L7

L5 L14

L10

Ranking

𝐰𝟒

𝐰𝟏𝟏

𝐰9

𝐰𝟏

𝐰𝟏𝟑

w6

ℛ

𝑠4
Max

Min
𝑠6

𝒮

Shortlister
failure

Taj

Mahal

ℰ𝐷

Doc Emb.

ො𝐱

ReLU

Figure 1: DECAF’s frugal prediction pipeline scales to mil-
lions of labels. Given a document x, its text embedding x̂ (see
Fig 3 (Left)) is first used by the shortlister S to shortlist the
most probable O (log𝐿) labels while maintaining high recall.
The ranker R then uses label classifiers (see Fig 3 (Right)) of
only the shortlisted labels to produce the final ranking.

ℰ

…

…
𝐑

𝐯

𝒞𝑇

ℰ 𝐯 = 𝒞𝑇 𝐯, 𝐑 ⋅ RELU 𝐯

Text Embedding Block Combination Block

𝒞

𝐯𝐮

𝛂 𝛃

𝒞 𝐮, 𝐯 = 𝜎 𝛂 ⊙ 𝐮⊕ 𝜎 𝛃 ⊙ 𝐯

ReLU

SigmoidSigmoid

Figure 2: (Left) DECAF uses a lightweight architecture with
a residual layer to embed both document and label text (see
Fig. 3). (Right) Combination blocks are used to combine var-
ious representations (separate instances are used in the text
embedding blocks (E𝐷 , E𝐿) and in label classifiers (C𝐿)).

The STOP

Tallis

Scholars

Sing

Josquin

ℰ𝐷
ො𝐱0

ො𝐱 = RELU ℰ𝐷 ො𝐱0 , ො𝐱0 = 𝐄𝐱

Document Text Embedding

ො𝐱

𝐰𝑙 = 𝒞𝐿 ො𝐳𝑙
1, ො𝐳𝑙

2

ො𝐳𝑙
2

𝐰𝑙

& STOP

Desprez

Motets

Chansons ℰ𝐿ො𝐳𝑙
0

ො𝐳𝑙
1 = ℰ𝐿 ො𝐳𝑙

0 , ො𝐳𝑙
0 = 𝐄𝐳𝑙Label Text Emb.

Josquin

ො𝐳𝑙
1

Label Classifier

𝒞𝐿ReLU

Figure 3: (Left) Document text is embedded using an in-
stance E𝐷 of the text embedding block (see Fig. 2). Stop
words (e.g. and, the) are discarded. (Right) DECAF critically
incorporates label text into classifier learning. For each la-
bel 𝑙 ∈ [𝐿], a one-vs-all classifier w𝑙 is learnt by combining
label text embedding ẑ1

𝑙
(using a separate instance E𝐿 of the

text embedding block) and a refinement vector ẑ2
𝑙
. Note that

E𝐷 , E𝐿, C𝐿 use separate parameters. However, all labels share
the blocks E𝐿, C𝐿 and all documents share the block E𝐷 .

is the ground truth label vector with 𝑦𝑖𝑙 = +1 if label 𝑙 ∈ [𝐿] is
relevant to the 𝑖th document and 𝑦𝑖𝑙 = −1 otherwise. For each label

𝑙 ∈ [𝐿], its label text is similarly represented as z𝑙 ∈ R𝑉 .
Document and label-text embedding: DECAF learns 𝐷-dim

embeddings for each vocabulary token i.e. E = [e1, . . . , e𝑉] ∈ R𝐷×𝑉

and uses a light-weight embedding block (see Fig 3) to encode la-

bel and document texts. The embedding block E = {R,𝜶 , 𝜷} is

parameterized by a residual block R ∈ R𝑑×𝑑 and scaling constants

𝜶 , 𝜷 ∈ R𝐷 for the combination block (see Fig 2). The embedding for

a bag-of-tokens vector, say r ∈ R𝑉 , is E(r) = 𝜎 (𝜶) ⊙ r̂0+𝜎 (𝜷) ⊙ (R ·
ReLU(r̂0)) ∈ R𝐷 where r̂0 = Er, ⊙ denotes component-wise mul-

tiplication, and 𝜎 is the sigmoid function. Document embeddings,

denoted by x̂𝑖 , are computed as x̂𝑖 = ReLU(E𝐷 (x𝑖)). Label-text
embeddings, denoted by ẑ1

𝑙
are computed as ẑ1

𝑙
= E𝐿 (z𝑙). Note

that document and labels use separate instantiations E𝐷 , E𝐿 of

the embedding block. We note that DECAF could also be made to

use alternate text representations such as BERT [9], attention [38],

LSTM [13] or convolution [22]. However, such elaborate archi-

tectures negatively impact prediction time and moreover, DECAF
outperforms BERT, CNN and attention based XML techniques on

all our benchmark datasets indicating the suitability of DECAF’s
frugal architecture to short-text applications.

1-vs-All Label Classifiers: DECAF uses high capacity 1-vs-

All (OvA) classifiers W = [w1, . . . ,w𝐿] ∈ R𝐷×𝐿
that outperform

tree- and embedding-based classifiers [2, 3, 7, 14, 29, 36]. However,

DECAF distinguishes itself from previous OvA works (even those

such as [7] that do use label text) by directly incorporating label

text into the OvA classifiers. For each label 𝑙 ∈ [𝐿], the label-text
embedding ẑ1

𝑙
= E𝐿 (z𝑙) (see above) is combined with a refinement

vector ẑ2
𝑙
that is learnt separately per label, to produce the label

classifier w𝑙 = 𝜎 (𝜶𝐿) ⊙ ẑ1
𝑙
+ 𝜎 (𝜷𝐿) ⊙ ẑ2

𝑙
∈ R𝐷 where 𝜶𝐿, 𝜷𝐿 ∈ R𝐷

are shared across labels (see Fig 3). Incorporating ẑ1
𝑙
into the label

classifier w𝑙 allows labels that never co-occur, but nevertheless
share tokens, to perform learning in a collaborative manner since

if two labels, say 𝑙,𝑚 ∈ [𝐿] share some token 𝑡 ∈ [𝑉] in their

respective texts, then e𝑡 contributes to both ẑ1𝑙 and ẑ
1

𝑚 . In particular,

this allows rare labels to share classifier information with popular

labels with which they share a token. Ablation studies (Tab 4,5,6)

show that incorporating label text into classifier learning offers

DECAF significant gains of over 2-6% compared to methods that

do not use label text. Incorporating other forms of label metadata,

such as label hierarchies, could also lead to further gains.

Shortlister: OvA training and prediction can be prohibitive,

Ω (𝑁𝐷𝐿) and Ω (𝐷𝐿) resp., if done naively. A popular way to ac-

celerate training is to, for every data point 𝑖 ∈ [𝑁], use only a

shortlist containing all positive labels (that are relatively fewer

around O (log𝐿)) and a small subset of the, say again O (log𝐿),
most challenging negative labels [5, 7, 14, 20, 29, 36]. This allows

training to be performed in O (𝑁𝐷 log𝐿) time instead of O (𝑁𝐷𝐿)
time. DECAF learns a shortlister S that offers a label-clustering

based shortlisting. We have S = {C,H} where C = {𝐶1, . . . ,𝐶𝐾 } is
a balanced clustering of the 𝐿 labels and H = [h1, . . . , h𝐾] ∈ R𝐷×𝐾

are OvA classifiers, one for each cluster. Given the embedding x̂ of

a document and beam-size 𝐵, the top 𝐵 clusters with the highest

scores, say

〈
h𝑚1

, x̂
〉
≥
〈
h𝑚2

, x̂
〉
≥ . . . are taken and labels present

therein are shortlisted i.e. S(x̂) := {𝑚1, . . . ,𝑚𝐵}. As clusters are

balanced, we get, for every datapoint, 𝐿𝐵/𝐾 shortlisted labels in the

clusters returned. DECAF uses 𝐾 = 2
17

clusters for large datasets.

Prediction Pipeline: Fig 1 shows the frugal prediction pipeline

adopted by DECAF. Given a document x ∈ R𝑉 , its embedding

x̂ = ReLU(E𝐷 (x)) is used by the shortlister to obtain a shortlist of

𝐵 label clustersS(x̂) = {𝑚1, . . . ,𝑚𝐵}. Label scores are computed for

every shortlisted label i.e. 𝑙 ∈ 𝐶𝑚,𝑚 ∈ S(x̂) by combining shortlis-

ter and OvA classifier scores as 𝑠𝑙 := 𝜎 (⟨w𝑙 , x̂⟩) · 𝜎 (⟨h𝑚, x̂⟩). These
scores are sorted to make the final prediction. In practice, even on

a dataset with 1.3 million labels, DECAF could make predictions

within 0.2 ms using a GPU and 2 ms using a CPU.

3.1 Efficient Training: the DeepXML Pipeline
Summary: DECAF adopts the scalable DeepXML pipeline [8] that

splits training into 4 modules. In summary, Module I jointly learns

the token embeddings E, the embedding modules E𝐷 , E𝐿 and short-

lister S. Module II fine-tunes E𝐷 , E𝐿,S, and retrieves label short-

lists for all data points. After performing initialization in Module

III, Module IV jointly learns the OvA classifiersW and fine-tunes

E𝐷 , E𝐿 using the shortlists generated in Module II. Due to lack of

space some details are provided in the supplementary material
1

Module I: Token embeddings E ∈ R𝐷×𝑉
are randomly initial-

ized using [12], residual blocks within the blocks E𝐷 , E𝐿 are ini-

tialized to identity, and label centroids are created by aggregating

document information for each label 𝑙 ∈ [𝐿] as c𝑙 =
∑
𝑖:𝑦𝑖𝑙=+1 x𝑖 .

Balanced hierarchical binary clustering [29] is now done on these

label centroids for 17 levels to generate 𝐾 label clusters. Clustering

labels using label centroids gave superior performance than using

other representations such as label text z𝑙 . This is because the label
centroid carries information from multiple documents and thus, a

diverse set of tokens whereas z𝑙 contains information from only

a handful of tokens. The hierarchy itself is discarded and each re-

sulting cluster is now treated as a meta-label that gives us a meta
multi-label classification problem on the same training points, but

with 𝐾 meta-labels instead of the original 𝐿 labels. Each meta label

𝑚 ∈ [𝐾] is granted meta-label text as u𝑚 =
∑
𝑙 ∈𝐶𝑚

z𝑙 . Each data-

point 𝑖 ∈ [𝑁] is assigned a meta-label vector ỹ𝑖 ∈ {−1, +1}𝐾 such

that 𝑦𝑖𝑚 = +1 if 𝑦𝑖𝑙 = +1 for any 𝑙 ∈ 𝐶𝑚 and 𝑦𝑖𝑚 = −1 if 𝑦𝑖𝑙 = −1
for all 𝑙 ∈ 𝐶𝑚 . OvA meta-classifiers H = [h1, . . . , h𝐾] ∈ R𝐷×𝐾

are

learnt to solve this meta multi-label problem but are constrained in

Module I to be of the form h𝑚 = E𝐿 (u𝑚). This constrained form

of the meta-classifier forces good token embeddings E to be learnt

that allow meta-classification without the assistance of powerful

refinement vectors. However, this form continues to allow collab-

orative learning among meta classifiers based on shared tokens.

Module I solves the meta multi-label classification problem while

jointly training E𝐷 , E𝐿, E (implicitly learning H in the process).

Module II: The shortlister is fine-tuned in this module. Label

centroids are recomputed as c𝑙 =
∑
𝑖:y𝑖

𝑙
=+1 Ex𝑖 where E are the task-

specific token embeddings learnt in Module I. The meta multi-label

classification problem is recreated using these new centroids by

following the same steps outlined in Module I. Module II uses OvA

meta-classifiers that are more powerful and resemble those used by

DECAF. Specifically, we now have h𝑚 = 𝜎 (�̃�𝑃) ⊙ û2𝑚 +𝜎 (˜𝜷𝑃) ⊙ û1𝑚

1
Supplementary Material Link: http://manikvarma.org/pubs/mittal21.pdf

where û1𝑚 =
∑
𝑙 ∈𝐶𝑚

E𝐿 (z𝑙) is themeta label-text embedding, û2𝑚 are

meta label-specific refinement vectors, andC𝑃 =

{
�̃�𝑃 , ˜𝜷𝑃

}
is a fresh

instantiating of the combination block. Module II solves the (new)

meta multi-label classification problem, jointly learning C𝑃 , û2𝑚
(implicitly updating H in the process) and fine-tuning E𝐷 , E𝐿, E.
The shortlister S so learnt is now used to retrieve shortlists S(x𝑖)
for each data point 𝑖 ∈ [𝑁].

Module III: Residual blocks within E𝐷 , E𝐿 are re-initialized to

identity, S is frozen and combination block parameters for the OvA

classifiers are initialized to 𝜶𝐿 = 𝜷𝐿 = 0 (note that 𝜎 (0) = 0.5 · 1
where 1 is the all-ones vector). Refinement vectors for all 𝐿 labels

are initialized to ẑ2
𝑙
= Ez𝑙 . Ablation studies (see Tab 6) show that

this refinement vector initialization offers performance boosts of

up to 5-10% compared to random initialization as is used by existing

methods such as AttentionXML [38] and the X-Transformer [7].

Module IV: This module performs learning using an approxi-

mate likelihood model. LetΘ = {E, E𝐷 , E𝐿, C𝐿,W} be the model pa-

rameters in the DECAF architecture. We recall that C𝐿 are combina-

tion blocks used to construct the OvA classifiers andmeta classifiers,

and E are the token embeddings. OvA approaches assume a likeli-

hood decomposition such as P [y𝑖 | x𝑖 ,Θ] =
∏𝐿
𝑙=1
P [𝑦𝑖𝑙 | x̂𝑖 ,w𝑙] =∏𝐿

𝑙=1
(1 + exp (−𝑦𝑖𝑙 · ⟨x̂𝑖 ,w𝑙 ⟩))−1. Here x̂𝑖 = ReLU(E𝐷 (x𝑖)) is the

document-text embedding and w𝑙 are the OvA classifiers as shown

in Fig 3. Let us abbreviate ℓ𝑖𝑙 (Θ) = ln (1 + exp (−𝑦𝑖𝑙 · ⟨x̂𝑖 ,w𝑙 ⟩)).
Then, our objective is to optimize argminΘ L(Θ) where

L(Θ) = 1

𝑁𝐿

∑
𝑖∈[𝑁]

∑
𝑙 ∈[𝐿]

ℓ𝑖𝑙 (Θ)

However, performing the above optimization exactly is intractable

and takes Ω (𝑁𝐷𝐿) time. DECAF’s solves this problem by instead

optimizing argminΘ
˜L(Θ | S) where

˜L(Θ | S) = 𝐾

𝑁𝐿𝐵

∑
𝑖∈[𝑁]

∑
𝑙 ∈S(x̂𝑖)

ℓ𝑖𝑙 (Θ)

Recall that for any document, S(x̂𝑖) is a shortlist of 𝐵 label clusters

(that give us a total of 𝐿𝐵/𝐾 labels). Thus, the above expression

contains only 𝑁𝐿𝐵/𝐾 ≪ 𝑁𝐿 terms as DECAF uses a large fanout

of 𝐾 ≈ 130K and 𝐵 ≈ 100. The result below assures us that model

parameters and embeddings obtained by optimizing
˜L(Θ | S) per-

form well w.r.t. the original likelihood L(Θ) if the dataset exhibits
label sparsity, and the shortlister assures high recall.

Theorem 3.1. Suppose the training data has label sparsity at rate
𝑠 i.e.

∑
𝑖∈[𝑁]

∑
𝑙 ∈[𝐿] I {𝑦𝑖𝑙 = +1} = 𝑠 · 𝑁𝐿 and the shortlister offers a

recall rate of 𝑟 on the training set i.e.
∑
𝑖∈[𝑁]

∑
𝑙 ∈S(x̂𝑖) I {𝑦𝑖𝑙 = +1} =

𝑟𝑠 ·𝑁𝐿. Then if Θ̂ is obtained by optimizing the approximate likelihood
function ˜L(Θ | S), then the following always holds

L(Θ̂) ≤ min

Θ
L(Θ) + O (𝑠 (1 − 𝑟) ln(1/(𝑠 (1 − 𝑟)))) .

Please refer to Appendix A.1 in the supplementary material for

the proof. As 𝑠 → 0 and 𝑟 → 1, the excess error term vanishes at

rate at least

√
𝑠 (1 − 𝑟). Our XML datasets do exhibit label sparsity

at rate 𝑠 ≈ 10
−5

and Fig 6 shows that DECAF’s shortlister does
offer high recall with small shortlists (80% recall with ≈ 50-sized

shortlist and 85% recall with ≈ 100-sized shortlist). Since Thm 3.1

holds in the completely agnostic setting, it establishes the utility

http://manikvarma.org/pubs/mittal21.pdf
http://manikvarma.org/pubs/mittal21.pdf
http://manikvarma.org/pubs/mittal21.pdf

of learning when likelihood maximization is performed only on

label shortlists with high-recall. Module IV uses these shortlists to

jointly learn the 𝐿 OvA classifiersW and C𝐿 , as well as fine-tune
the embedding blocks E𝐷 , E𝐿 and token embeddings E.

Loss Function and Regularization: Modules I, II, IV use the

logistic loss and the Adam [21] optimizer to train the model parame-

ters and various refinement vectors. Residual layers used in the text

embedding blocks E𝐷 , E𝐿 were subjected to spectral regularization

[26]. All ReLU layers were followed by a dropout layer with 50%

drop-rate in Module-I and 20% for the rest of the modules.

Ensemble Learning: DECAF learns an inexpensive ensemble

of 3 instances (see Figure 5). The three instances share Module

I training to promote scalability i.e. they inherit the same token

embeddings. However, they carry out training Module II onwards

independently. Thus, the shortlister and embedding modules get

fine-tuned for each instance.

Time Complexity: Appendix A.2 in the supplementary mate-

rial presents time complexity analysis for the DECAF modules.

4 EXPERIMENTS
Datasets: Experiments were conducted on product-to-product and

related-webpage recommendation datasets. These were short-text

tasks with only the product/webpage titles being used to perform

prediction. Of these, LF-AmazonTitles-131K, LF-AmazonTitles-1.3M,

and LF-WikiSeeAlsoTitles-320K are publicly available at The Ex-

treme Classification Repository [4]. Results are also reported on

two proprietary product-to-product recommendation datasets (LF-

P2PTitles-300K and LF-P2PTitles-2M) mined from click logs of the

Bing search engine, where a pair of products was considered similar

if the Jaccard index of the set of queries which led to a click on

them was found to be more than a certain threshold. We also con-

sidered some datasets’ long text counterparts, namely LF-Amazon-

131K and LF-WikiSeeAlso-320K, which contained the entire prod-

uct/webpage descriptions. Note that LF-AmazonTitles-131K and

LF-AmazonTitles-1.3M (as well as their long-text counterparts) are

subsets of the standard AmazonTitles-670K and AmazonTitles-3M

datasets respectively, and were created by restricting the label set

to labels for which label-text was available. Please refer to Ap-

pendix A.3 and Table 7 in the supplementary material for dataset

preparation details and dataset statistics.

Baseline algorithms:DECAFwas compared to leading deep ex-

treme classifiers including the X-Transformer [7], Astec [8], XT [35],

AttentionXML [38], and MACH [23], as well as standard extreme

classifiers based on fixed or sparse BoW features including Bon-

sai [20], DiSMEC [2], Parabel [29], AnnexML [33]. Slice [14]. Slice

was trained with fixed FastText [6] features, while other methods

used sparse BoW features. Unfortunately, GLaS [11] could not be

included in the experiments as their code was not publicly available.

Each baseline deep learning method was given a 12-core Intel Sky-

lake 2.4 GHz machine with 4 Nvidia V100 GPUs. However, DECAF
was offered a 6-core Intel Skylake 2.4 GHz machine with a single

Nvidia V100 GPU. A training timeout of 1 week was set for every

method. Please refer to Table 9 in the supplementary material for

more details.

Table 1: Results on publicly available short-text datasets.
DECAF was found to be 2–6% more accurate, as well as an
order of magnitude faster at prediction compared to other
deep learning based approaches. Algorithms marked with
a ‘-’ were unable to scale on the given dataset within avail-
able resources and timeout period. Prediction times for DE-
CAF within parenthesis indicate those obtained on a CPU
whereas those outside parentheses are times on a GPU.

Method PSP@1 PSP@5 P@1 P@5 Prediction
Time (ms)

LF-AmazonTitles-131K

DECAF 30.85 41.42 38.4 18.65 0.1 (1.15)

Astec 29.22 39.49 37.12 18.24 2.34

AttentionXML 23.97 32.57 32.25 15.61 5.19

MACH 24.97 34.72 33.49 16.45 0.23

X-Transformer 21.72 27.09 29.95 13.07 15.38

Siamese 13.3 13.36 13.81 5.81 0.2

Parabel 23.27 32.14 32.6 15.61 0.69

Bonsai 24.75 34.86 34.11 16.63 7.49

DiSMEC 25.86 36.97 35.14 17.24 5.53

PfastreXML 26.81 34.24 32.56 16.05 2.32

XT 22.37 31.64 31.41 15.48 9.12

Slice 23.08 31.89 30.43 14.84 1.58

AnneXML 19.23 32.26 30.05 16.02 0.11

LF-WikiSeeAlsoTitles-320K

DECAF 16.73 21.01 25.14 12.86 0.09 (0.97)

Astec 13.69 17.5 22.72 11.43 2.67

AttentionXML 9.45 11.73 17.56 8.52 7.08

MACH 9.68 12.53 18.06 8.99 0.52

X-Transformer - - - - -

Siamese 10.1 9.59 10.69 4.51 0.17

Parabel 9.24 11.8 17.68 8.59 0.8

Bonsai 10.69 13.79 19.31 9.55 14.82

DiSMEC 10.56 14.82 19.12 9.87 11.02

PfastreXML 12.15 13.26 17.1 8.35 2.59

XT 8.99 11.82 17.04 8.6 12.86

Slice 11.24 15.2 18.55 9.68 1.85

AnneXML 7.24 11.75 16.3 8.84 0.13

LF-AmazonTitles-1.3M

DECAF 22.07 29.3 50.67 40.35 0.16 (1.73)

Astec 21.47 27.86 48.82 38.44 2.61

AttentionXML 15.97 22.54 45.04 36.25 29.53

MACH 9.32 13.26 35.68 28.35 2.09

X-Transformer - - - - -

Siamese - - - - -

Parabel 16.94 24.13 46.79 37.65 0.89

Bonsai 18.48 25.95 47.87 38.34 39.03

DiSMEC - - - - -

PfastreXML 28.71 32.51 37.08 31.43 23.64

XT 13.67 19.06 40.6 32.01 5.94

Slice 13.8 18.89 34.8 27.71 1.45

AnneXML 15.42 21.91 47.79 36.91 0.12

http://manikvarma.org/pubs/mittal21.pdf
http://manikvarma.org/pubs/mittal21.pdf
http://manikvarma.org/pubs/mittal21.pdf
http://manikvarma.org/pubs/mittal21.pdf

Table 2: Results on proprietary product-to-product (P2P)
recommendation datasets. C@20 denotes label coverage of-
fered by the top 20 predictions of each method. DECAF of-
fers significantly better accuracies than all competingmeth-
ods. Other methods such as AnnexML and DiSMEC did not
scale with available resources within the timeout period.

Method PSP@1 PSP@5 P@1 P@5 C@20

LF-P2PTitles-300K

DECAF 42.43 62.3 47.17 22.69 95.32

Astec 39.44 57.83 44.30 21.56 95.61

Parabel 37.26 55.32 43.14 20.99 95.59

PfastreXML 35.79 49.9 39.4 18.77 87.91

Slice 27.03 34.95 31.27 25.19 95.06

LF-P2PTitles-2M

DECAF 36.65 45.15 40.27 31.45 93.08

Astec 32.75 41 36.34 28.74 95.3

Parabel 30.21 38.46 35.26 28.06 92.82

PfastreXML 28.84 35.65 30.52 24.6 88.05

Slice 27.03 34.95 31.27 25.19 93.43

Evaluation: Standard extreme classification metrics [3, 22, 29,

30, 38], namely Precision (P@𝑘) and propensity scored precision

(PSP@𝑘) for 𝑘 = 1, 3, 5 were used and are detailed in Appendix A.4

in the supplementary material.

Hyperparameters: DECAF has two tuneable hyperparameters

a) beam-width 𝐵 which determines the shortlist length 𝐿𝐵/𝐾 and

b) token embedding dimension 𝐷 . 𝐵 was chosen after concluding

Module II training by setting a value that ensured a recall of > 85%

on the training set (note that choosing 𝐵 = 𝐾 trivially ensures 100%

recall). Doing so did not require DECAF to re-train Module II yet

ensured a high quality shortlisting. Token embedding dimension 𝐷

was kept at 512 for larger datasets to improve the network capacity

for large output spaces. For the small dataset LF-AmazonTitles-

131K, clusters size 𝐾 was kept at 2
15

and for other datasets it was

kept at 2
17
. All other hyperparameters including learning rate,

number of epochs were set to their default values across all datasets.

Please refer to Table 8 in the supplementary material for details.

Results on public datasets: Table 1 compares DECAF with

leadingXML algorithms on short-text product-to-product and related-

webpage tasks. For details as well as results on long-text versions

of these datasets, please refer to Table 9 in the supplementary mate-

rial. Furthermore, although DECAF focuses on product-to-product

applications, results on product-to-category style datasets such as

product-to-category prediction on Amazon or article-to-category

prediction on Wikipedia are reported in Table 10 in the supple-

mentary material. Parabel [28], Bonsai [20], AttentionXML [38]

and X-Transformer [7] are the most relevant methods to DECAF
as they shortlist labels based on a tree learned in the label cen-

troid space. DECAF was found to be 4 − 10% more accurate than

methods such as Slice [14], PfastreXML [16], DiSMEC [2], and An-

nexML [33] that use fixed or pre-learnt features. This demonstrates

that learning tasks-specific features can lead to significantly more

complete
(#131K)

5
(#68K)
(1.96)

4
(#28K)
(4.72)

3
(#18K)
(7.38)

2
(#11K)
(12.11)

1
(#4K)

(31.32)
Quantiles

 (Increasing Freq.)

0

5

10

15

Pr
ec

isi
on

@
5

LF-AmazonTitles-131K
DECAF
Astec
Bonsai
MACH
Parabel
AttentionXML
Slice

complete
(#312K)

5
(#195K)
(1.49)

4
(#74K)
(3.94)

3
(#31K)
(9.14)

2
(#9K)

(30.98)

1
(#1K)

(200.78)
Quantiles

 (Increasing Freq.)

0.0

2.5

5.0

7.5

10.0

12.5

Pr
ec

isi
on

@
5

LF-WikiSeeAlsoTitles-320K
DECAF
Astec
Bonsai
MACH
Parabel
AttentionXML
Slice

Figure 4: Quantile analysis of gains offered by DECAF in
terms of contribution to P@5. The label set was divided
into 5 equi-voluminous binswith increasing label frequency.
Quantiles increase in mean label frequency from left to
right. DECAF consistently outperforms other methods on
all bins with the difference in accuracy being more promi-
nent on bins containing data-scarce tail labels (e.g. bin 5).

accurate predictions. DECAF was also compared with other lead-

ing deep learning based approaches like MACH [23], and XT [35].

DECAF could be up to 7% more accurate while being more than

150× faster at prediction as compared to attention based models

like X-Transformer and AttentionXML. DECAF was also compared

to Siamese networks that had similar access to label metadata as

DECAF. However, DECAF could be up to 15% more accurate than a

Siamese network at an extreme scale. DECAF was also compared to

Astec [8] that was specifically designed for short-text applications

but does not utilize label metadata. DECAF could be up to 3% more

accurate than Astec. This further supports DECAF’s claim of using

label meta-data for improving prediction accuracy. Even on long-

text tasks such as the LF-WikiSeeAlso-320K dataset (please refer

to Table 9 in the supplementary material), DECAF can be more

http://manikvarma.org/pubs/mittal21.pdf
http://manikvarma.org/pubs/mittal21.pdf
http://manikvarma.org/pubs/mittal21.pdf
http://manikvarma.org/pubs/mittal21.pdf
http://manikvarma.org/pubs/mittal21.pdf
http://manikvarma.org/pubs/mittal21.pdf
http://manikvarma.org/pubs/mittal21.pdf

Table 3: DECAF’s predictions on selected test points. Docu-
ment and label names ending in “. . . ” were abbreviated due
to lack of space. Please refer to Table 12 in the supplemen-
tary material for the complete table. Predictions in black
and a non-bold/non-italic font were a part of the ground
truth. Those in bold italics were part of the ground truth but
never seenwith other the ground truth labels in the training
set i.e. had no common training points. Predictions in light
gray were not a part of the ground truth. DECAF’s exploits
label metadata to discover semantically correlated labels.

Document Top 5 predictions by DECAF

Panzer Dra-

goon Zwei

Panzer Dragoon, Action Replay Plus, Sega Saturn Sys-

tem - Video Game Console, The Legend of Dragoon ,

Panzer Dragoon Orta

Wagner - Die

Walkure . . .

Wagner - Siegfried . . . , Wagner - Gotterdammerung

. . . , Wagner - Der Fliegende Holländer (1986),Wag-
ner - Gotterdammerung . . . , Seligpreisung

New Zealand

dollar

Economy of New Zealand, Cook Islands dollar, Pol-

itics of New Zealand , Pitcairn Islands dollar, Aus-
tralian dollar

accurate in propensity scored metrics compared to the second best

method AttentionXML, in addition to being vastly superior in terms

of prediction time. This indicates the suitability of DECAF’s frugal
architecture to product-to-product scenarios. The frugal architec-

ture also allows DECAF to make predictions on a CPU within a few

milliseconds even for large datasets such as LF-AmazonTitles-1.3M

while other deep extreme classifiers can take an order of magnitude

longer time even on a GPU. DECAF’s prediction times on a CPU

are reported within parentheses in Table 1.

Results on proprietary datasets: Table 2 presents results on
proprietary product-to-product recommendation tasks (with details

presented in Table 11 in the supplementary material). DECAF could
easily scale to the LF-P2PTitles-2M dataset and be upto 2% more

accurate than leading XML algorithms including Bonsai, Slice and

Parabel. Unfortunately, leading deep learning algorithms such as

X-Transformer could not scale to this dataset within the timeout.

DECAF offers label coverage similar to state-of-the-art XML meth-

ods yet offers the best accuracy in terms of P@1. Thus, DECAF’s
superior predictions do not come at a cost of coverage.

Analysis: Table 3 shows specific examples of DECAF predic-

tions.DECAF encourages collaborative learning among labels which

allows it to predict the labels “Australian dollar" and “Economy

of New Zealand” for the document “New Zealand dollar” when

other methods failed to do so. This example was taken from the

LF-WikiseeAlsoTitles-320K dataset (please refer to Table 12 in the

supplementary material for details). It is notable that these labels do

not share any common training instances with other ground truth

labels but are semantically related nevertheless. DECAF similarly

predicted a rare label “Panzer Dragoon Orta” for the (video game)

product “Panzer Dragoon Zwei’ whereas other algorithms failed

to do so. To better understand the nature of DECAF’s gains, the
label set was divided into five uniform bins (quantiles) based on

frequency of occurrence in the training set. DECAF’s collaborative

Table 4: Augmenting existing BoW-based XML methods by
incorporating label metadata leads to 1.5% increase in the ac-
curacy as compared to base method. However,DECAF could
be up to 7%more accurate compared to even these.

Method PSP@1 PSP@5 P@1 P@5

LF-AmazonTitles-131K

DECAF 30.85 41.42 38.4 18.65

Parabel 23.27 32.14 32.6 15.61

Parabel + metadata 25.89 34.83 33.6 15.84

Bonsai 24.75 34.86 34.11 16.63

Bonsai + metadata 26.82 36.63 34.83 16.67

DiSMEC 26.25 37.15 35.14 17.24

DiSMEC + metadata 27.19 38.17 35.52 17.52

LF-WikiSeeAlsoTitles-320K

DECAF 16.73 21.01 25.14 12.86

Parabel 9.24 11.8 17.68 8.59

Parabel + metadata 12.96 16.77 20.69 10.24

Bonsai 10.69 13.79 19.31 9.55

Bonsai + metadata 13.63 17.54 21.61 10.72

DiSMEC 10.56 14.82 19.12 9.87

DiSMEC + metadata 12.46 15.9 20.74 10.29

approach using label text in classifier learning led to gains in ev-

ery quantile, the gains were more prominent on the data-scarce

tail-labels, as demonstrated in Figure 4.

Incorporating metadata into baseline XML algorithms: In
principle, DECAF’s formulation could be deployed with existing

XML algorithms wherever collaborative learning is feasible. Table

4 shows that introducing label text embeddings to the DiSMEC,

Parabel, and Bonsai classifiers led to upto 1.5% gain as compared to

their vanilla counterparts that do not use label text. Details of these

augmentations are given in Appendix A.5 in the supplementary

material. Thus, label text inclusion can lead to gains for existing

methods as well. However, DECAF continues to be upto 7% more

accurate than even these augmented versions. This shows that

DECAF is more efficient at utilizing available label text.

Shortlister: DECAF’s shortlister distinguishes itself from previ-

ous shortlisting strategies [7, 20, 29, 38] in two critical ways. Firstly,

DECAF uses a massive fanout of 𝐾 = 2
17 ≈ 130K clusters whereas

existing approaches either use much fewer (upto 8K) clusters [5, 7]

or use hierarchical clustering with a small fanout (upto 100) at

each node [20, 38]. Secondly, in contrast to other methods that

create shortlists from generic embeddings (e.g. bag-of-words or

FastText [18]), DECAF fine-tunes its shortlister in Module II us-

ing task-specific embeddings learnt in Module I. Tables 5 and 6

show that DECAF’s shortlister offers much better performance

than shortlists computed using a small fanout or else computed

using ANNS-based negative sampling [14]. Fig 6 shows that a large

fanout offers much better recall even with small shortlist lengths

than if using even moderate fanouts e.g. 𝐾 = 8K.

http://manikvarma.org/pubs/mittal21.pdf
http://manikvarma.org/pubs/mittal21.pdf
http://manikvarma.org/pubs/mittal21.pdf
http://manikvarma.org/pubs/mittal21.pdf
http://manikvarma.org/pubs/mittal21.pdf
http://manikvarma.org/pubs/mittal21.pdf

Table 5: Using strategies used by existing XML algorithms
for shortlisting labels instead of S hurts both both shortlist
recall (R@20) and final prediction accuracy (P@k, PSP@k).

Method PSP@1 PSP@5 P@1 P@5 R@20

LF-AmazonTitles-131K

DECAF 30.85 41.42 38.4 18.65 55.86

+ HNSW Shortlist 29.55 39.17 36.7 17.78 48.82

+ Parabel Shortlist 24.88 31.21 32.13 14.73 39.36

LF-WikiSeeAlsoTitles-320K

DECAF 16.73 21.01 25.14 12.86 37.53

+ HNSW Shortlist 15.68 19.38 23.84 12.11 30.26

+ Parabel Shortlist 13.17 15.09 21.18 10.05 23.91

Table 6: Analyzing the impact for alternative design and al-
gorithmic choices for DECAF’s components.

Component PSP@1 PSP@5 P@1 P@5 R@20

LF-AmazonTitles-131K

DECAF 30.85 41.42 38.4 18.65 55.86
DECAF-FFT 25.5 33.38 32.42 15.43 47.23

DECAF-8K 29.07 38.7 36.29 17.52 51.65

DECAF-no-init 29.86 41.04 37.79 18.57 55.75

DECAF-ẑ1 28.02 38.38 33.5 17.09 53.83

DECAF-ẑ2 27.32 38.05 36 17.65 52.2

DECAF-lite 29.75 40.36 37.26 18.29 55.25

LF-WikiSeeAlsoTitles-320K

DECAF 16.73 21.01 25.14 12.86 37.53
DECAF-FFT 13.91 17.3 21.72 11 32.58

DECAF-8K 14.55 17.38 22.41 10.96 30.21

DECAF-no-init 15.09 19.47 23.81 12.25 36.18

DECAF-ẑ1 18.04 21.48 24.54 12.55 37.33

DECAF-ẑ2 11.55 15.24 20.82 10.53 29.72

DECAF-lite 16.59 20.84 24.87 12.78 37.24

Ablation: As described in Section 3, the training pipeline for

DECAF is divided into 4 modules mirroring the DeepXML pipeline

[8]. Table 6 presents the results of extensive experiments conducted

to analyze the optimality of algorithmic and design choices made

in these modules. We refer to Appendix A.5 in the supplementary

material for details. a) To assess the utility of learning task-specific

token embeddings in Module I, a variant DECAF-FFT was devised

that replaced these with pre-trained FastText embeddings: DECAF
outperforms DECAF-FFT by 6% in PSP@1 and 3.5% in P@1. b)
To assess the impact of a large fanout while learning the short-

lister, a variant DECAF-8K was trained with a smaller fanout of

𝐾 = 2
13 ≈ 8K clusters that is used by methods such as Atten-

tionXML and X-Transformer. Restricting fanout was found to hurt

accuracy by 3%. This can be attributed to the fact that the classifier’s

1 2 3 4 5 6
Instances

20

25

30

35

40

Pr
ec

isi
on

 (P
)

LF-AmazonTitles-131K
P@1
P@3
P@5

Figure 5: Impact of the number of instances in DECAF’s
ensemble on performance on the LF-AmazonTitles-131K
dataset. DECAF offers maximum benefits using a small en-
semble of 3 instances after which benefits taper off.

1 50 100 150 200 250 300 350 400
Shortlist Size (s)

0

20

40

60

80

Re
ca

ll@
s

LF-WikiSeeAlsoTitles-320K

 = 217

 = 213

Figure 6: A comparison of recall when using moderate or
large fanout on the LF-WikiSeeAlso-320K dataset. The x-
axis represents various values of beam-width 𝐵 and training
recall offered by each. A large fanout offers superior recall
with small beam width, and hence small shortlists lengths.

final accuracy depends on the recall of the shortlister (see Theo-

rem 3.1). Fig. 6 indicates that using 𝐾 = 2
13

results in significantly

larger shortlist lengths (upto 2× larger) being required to achieve

the same recall as compared to using𝐾 = 2
17
. Large shortlists make

Module IV training and prediction more challenging, especially

for large datasets involving millions of labels, thereby making a

large fan-out 𝐾 more beneficial. c) Approaches other than DECAF’s
shortlister S were considered for shortlisting labels, such as nearest

neighbor search using HNSW [14] or PLTs with small fanout such

as Parabel [29] learnt over dense document embeddings. Table 5

shows that both alternatives lead to significant loss, upto 15% in re-

call, as compared to that offered by S. These sub-optimal shortlists

eventually hurt final prediction which could be 2% less accurate as

compared to DECAF. d) To assess the importance of label classifier

initialization in Module III, a variant DECAF-no-init was tested
which initialized ẑ2

𝑙
randomly instead of with Ez𝑙 . DECAF-no-init

was found to offer 1-1.5% less PSP@1 than DECAF, therefore indi-
cating importance of proper initialization in Module III. e)Modules

II and IV learn OvA classifiers as a combination of the label em-

bedding vector and a refinement vector. To investigate the need

for both components, Table 6 considers two DECAF variants: the

http://manikvarma.org/pubs/mittal21.pdf
http://manikvarma.org/pubs/mittal21.pdf

first variant, named DECAF-ẑ1, discards the refinement vector in

both modules i.e. using w𝑙 = ẑ1
𝑙
and h𝑚 = û1𝑚 whereas the second

variant, named DECAF-ẑ2, rejects the label embedding component

altogether and learns the OvA classifers from scratch using only the

refinement vector i.e. using w𝑙 = ẑ2
𝑙
and h𝑚 = û2𝑚 . Both variants

take a hit of up to 5% in prediction accuracy as compared to DECAF.
Incorporating label-text in the classifier is critical to achieve supe-

rior accuracies. f) Finally, to assess the utility of fine-tuning token

embeddings in each successive module, a frugal versionDECAF-lite
was considered which freezes token embeddings after Module I and

shares token embeddings among the three instances in its ensem-

ble. DECAF-lite offers 0.5-1% loss in performance as compared to

DECAF but is noticeably faster at training.

5 CONCLUSION
This paper demonstrated the impact of incorporating label metadata

in the form of label text in offering significant performance gains

on several product-to-product recommendation tasks. It proposed

the DECAF algorithm that uses a frugal architecture, as well as a

scalable prediction pipeline, to offer predictions that are up to 2-6%

more accurate, as well as an order of magnitude faster, as compared

to leading deep learning-based XML algorithms. DECAF offers

millisecond-level prediction times on a CPU making it suitable for

real-time applications such as product-to-product recommendation

tasks. Future directions of work include incorporating other forms

of label metadata such as label-correlation graphs, as well as diverse

embedding architectures.

ACKNOWLEDGMENTS
The authors thank the IIT Delhi HPC facility for computational

resources. AM is supported by a Google PhD Fellowship.

REFERENCES
[1] R. Agrawal, A. Gupta, Y. Prabhu, and M. Varma. 2013. Multi-label learning

with millions of labels: Recommending advertiser bid phrases for web pages. In

WWW.

[2] R. Babbar and B. Schölkopf. 2017. DiSMEC: Distributed Sparse Machines for

Extreme Multi-label Classification. In WSDM.

[3] R. Babbar and B. Schölkopf. 2019. Data scarcity, robustness and extreme multi-

label classification. Machine Learning 108 (2019), 1329–1351.

[4] K. Bhatia, K. Dahiya, H. Jain, A. Mittal, Y. Prabhu, and M. Varma. 2016. The ex-

treme classification repository: Multi-label datasets and code. http://manikvarma.

org/downloads/XC/XMLRepository.html

[5] K. Bhatia, H. Jain, P. Kar, M. Varma, and P. Jain. 2015. Sparse Local Embeddings

for Extreme Multi-label Classification. In NIPS.
[6] P. Bojanowski, E. Grave, A. Joulin, and T. Mikolov. 2017. Enriching Word Vectors

with Subword Information. Transactions of the Association for Computational
Linguistics (2017).

[7] W-C. Chang, H.-F. Yu, K. Zhong, Y. Yang, and I. Dhillon. 2020. Taming Pretrained

Transformers for Extreme Multi-label Text Classification. In KDD.
[8] K. Dahiya, D. Saini, A. Mittal, A. Shaw, K. Dave, A. Soni, H. Jain, S. Agarwal, and

M. Varma. 2021. DeepXML: A Deep Extreme Multi-Label Learning Framework

Applied to Short Text Documents. In WSDM.

[9] J. Devlin, M. W. Chang, K. Lee, and K. Toutanova. 2019. BERT: Pre-training of

deep bidirectional transformers for language understanding. In NAACL.
[10] X. Glorot and X. Bengio. 2010. Understanding the difficulty of training deep

feedforward neural networks. In AISTATS.
[11] C. Guo, A. Mousavi, X. Wu, Daniel N. Holtmann-Rice, S. Kale, S. Reddi, and S.

Kumar. 2019. Breaking the Glass Ceiling for Embedding-Based Classifiers for

Large Output Spaces. In Neurips.
[12] K. He, X. Zhang, S. Ren, and J. Sun. 2015. Delving deep into rectifiers: Surpassing

human-level performance on imagenet classification. In Proceedings of the IEEE
international conference on computer vision. 1026–1034.

[13] S. Hochreiter and J. Schmidhuber. 1997. Long short-term memory. Neural
computation 9, 8 (1997), 1735–1780.

[14] H. Jain, V. Balasubramanian, B. Chunduri, and M. Varma. 2019. Slice: Scalable

Linear Extreme Classifiers trained on 100 Million Labels for Related Searches. In

WSDM.

[15] H. Jain, Y. Prabhu, and M. Varma. 2016. Extreme Multi-label Loss Functions for

Recommendation, Tagging, Ranking and Other Missing Label Applications. In

KDD.
[16] V. Jain, N. Modhe, and P. Rai. 2017. Scalable Generative Models for Multi-label

Learning with Missing Labels. In ICML.
[17] K. Jasinska, K. Dembczynski, R. Busa-Fekete, K. Pfannschmidt, T. Klerx, and E.

Hullermeier. 2016. Extreme F-measure Maximization using Sparse Probability

Estimates. In ICML.
[18] A. Joulin, E. Grave, P. Bojanowski, and T. Mikolov. 2017. Bag of Tricks for Efficient

Text Classification. In Proceedings of the European Chapter of the Association for
Computational Linguistics.

[19] B. Kanagal, A. Ahmed, S. Pandey, V. Josifovski, J. Yuan, and L. Garcia-Pueyo.

2012. Supercharging Recommender Systems Using Taxonomies for Learning

User Purchase Behavior. VLDB (June 2012).

[20] S. Khandagale, H. Xiao, and R. Babbar. 2020. Bonsai: diverse and shallow trees for

extreme multi-label classification. Machine Learning 109, 11 (2020), 2099–2119.

[21] P. D. Kingma and J. Ba. 2014. Adam: A Method for Stochastic Optimization. CoRR
(2014).

[22] J. Liu, W. Chang, Y. Wu, and Y. Yang. 2017. Deep Learning for Extreme Multi-label

Text Classification. In SIGIR.
[23] T. K. R. Medini, Q. Huang, Y. Wang, V. Mohan, and A. Shrivastava. 2019. Extreme

Classification in Log Memory using Count-Min Sketch: A Case Study of Amazon

Search with 50M Products. In Neurips.
[24] A. K. Menon, K.P. Chitrapura, S. Garg, D. Agarwal, and N. Kota. 2011. Response

Prediction Using Collaborative Filtering with Hierarchies and Side-Information.

In KDD.
[25] T. Mikolov, I. Sutskever, K. Chen, G. Corrado, and J. Dean. 2013. Distributed

Representations of Words and Phrases and Their Compositionality. In NIPS.
[26] T. Miyato, T. Kataoka, M. Koyama, and Y. Yoshida. 2018. Spectral Normalization

for Generative Adversarial Networks. In ICLR.
[27] A. Niculescu-Mizil and E. Abbasnejad. 2017. Label Filters for Large Scale Multil-

abel Classification. In AISTATS.
[28] Y. Prabhu, A. Kag, S. Gopinath, K. Dahiya, S. Harsola, R. Agrawal, and M. Varma.

2018. Extreme multi-label learning with label features for warm-start tagging,

ranking and recommendation. In WSDM.

[29] Y. Prabhu, A. Kag, S. Harsola, R. Agrawal, and M. Varma. 2018. Parabel: Parti-

tioned label trees for extreme classification with application to dynamic search

advertising. In WWW.

[30] Y. Prabhu and M. Varma. 2014. FastXML: A Fast, Accurate and Stable Tree-

classifier for eXtreme Multi-label Learning. In KDD.
[31] N. Sachdeva, K. Gupta, and V. Pudi. 2018. Attentive Neural Architecture Incorpo-

rating Song Features for Music Recommendation. In RecSys.
[32] W. Siblini, P. Kuntz, and F. Meyer. 2018. CRAFTML, an Efficient Clustering-based

Random Forest for Extreme Multi-label Learning. In ICML.
[33] Y. Tagami. 2017. AnnexML: Approximate Nearest Neighbor Search for Extreme

Multi-label Classification. In KDD.
[34] L. Wu, A. Fisch, S. Chopra, K. Adams, A. Bordes, and J. Weston. 2017. StarSpace:

Embed All The Things! CoRR (2017).

[35] M. Wydmuch, K. Jasinska, M. Kuznetsov, R. Busa-Fekete, and K. Dembczynski.

2018. A no-regret generalization of hierarchical softmax to extreme multi-label

classification. In NIPS.
[36] E.H. I. Yen, X. Huang, W. Dai, I. Ravikumar, P.and Dhillon, and E. Xing. 2017.

PPDSparse: A Parallel Primal-Dual Sparse Method for Extreme Classification. In

KDD.
[37] I. Yen, S. Kale, F. Yu, D. Holtmann R., S. Kumar, and P. Ravikumar. 2018. Loss

Decomposition for Fast Learning in Large Output Spaces. In ICML.
[38] R. You, Z. Zhang, Z. Wang, S. Dai, H. Mamitsuka, and S. Zhu. 2019. Attentionxml:

Label tree-based attention-aware deep model for high-performance extreme

multi-label text classification. In Neurips.

http://manikvarma.org/downloads/XC/XMLRepository.html
http://manikvarma.org/downloads/XC/XMLRepository.html

	Abstract
	1 Introduction
	2 Related Work
	3 DECAF: Deep Extreme Classification with Label Features
	3.1 Efficient Training: the DeepXML Pipeline

	4 Experiments
	5 Conclusion
	Acknowledgments
	References

