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ABSTRACT
This paper reformulates the problem of recommending related
queries on a search engine as an extreme multi-label learning task.
Extreme multi-label learning aims to annotate each data point with
the most relevant subset of labels from an extremely large label
set. Each of the top 100 million queries on Bing was treated as a
separate label in the proposed reformulation and an extreme classi-
fier was learnt which took the user’s query as input and predicted
the relevant subset of 100 million queries as output. Unfortunately,
state-of-the-art extreme classifiers have not been shown to scale
beyond 10 million labels and have poor prediction accuracies for
queries. This paper therefore develops the Slice algorithm which
can be accurately trained on low-dimensional, dense deep learning
features popularly used to represent queries and which efficiently
scales to 100 million labels and 240 million training points. Slice
achieves this by reducing the training and prediction times from
linear to logarithmic in the number of labels based on a novel neg-
ative sampling technique. This allows the proposed reformulation
to address some of the limitations of traditional related searches
approaches in terms of coverage, density and quality.

Experiments on publically available extreme classification datasets
with low-dimensional dense features as well as related searches
datasets mined from the Bing logs revealed that Slice could be more
accurate than leading extreme classifiers while also scaling to 100
million labels. Furthermore, Slice was found to improve the accu-
racy of recommendations by 10% as compared to state-of-the-art
related searches techniques. Finally, when added to the ensemble in
production in Bing, Slice was found to increase the trigger coverage
by 52%, the suggestion density by 33%, the overall success rate by
2.6% and the success rate for tail queries by 12.6%. Slice’s source
code can be downloaded from [21].
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1 INTRODUCTION
Objective: This paper develops the Slice (Scalable LInear extreme
ClassifiErs) algorithm for extrememulti-label learning based on low-
dimensional dense features. Slice accurately and efficiently scales
to problems involving 100 million labels and 240 million training
points which are far beyond the scaling capabilities of all other
extreme classifiers. This allows the reformulation of the related
searches problem as an extreme classification task and Slice was
shown to significantly increase the coverage, density and quality
of related searches on Bing when added to the ensemble of leading
related searches techniques in production.

Related searches: Given a query (referred to as the trigger)
submitted by a user on a search engine, related searches aims to
recommend related queries (referred to as suggestions) that might
serve the user’s information requirements better or recommend
suggestions that the user might ask in addition to get more infor-
mation on the topic. Traditional approaches to related searches
are based on sessions information, the query-url, query-flow and
term-query graphs, query synthesis and deep query embedding
techniques. Unfortunately, many of these techniques might not be
able to make recommendations for tail and previously unseen trig-
gers thereby reducing the trigger coverage. Furthermore, many of
these techniques recommend very few suggestions for tail triggers
thereby also reducing the suggestion density. This can be seen in
Figure 2 of the supplementary material where Bing, even though
it has a large ensemble of leading techniques in production, was
able to recommend only a single suggestion “cam newton shoulder
surgery” in response to the trigger “cam procedure shoulder”. Fi-
nally, the quality of suggestions recommended by many of these
techniques might also be suspect for tail triggers. For instance, the
trigger “cam procedure shoulder” was a query about the Compre-
hensive Arthroscopic Management shoulder surgery procedure
whereas Bing recommended an irrelevant suggestion about the
shoulder surgery of the American football quarterback Cam New-
ton. Slice tackles each of these three limitations by reformulating
related searches as an extreme multi-label learning task.
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Extreme classification: Extrememulti-label learning addresses
the problem of learning a classifier that can annotate a data point
with the most relevant subset of labels from an extremely large
label set. For instance, there are more than a million labels (tags)
on Wikipedia and one might wish to build an extreme multi-label
classifier that tags a new article or web page with the subset of the
most relevant Wikipedia labels. Note that multi-label classification
is distinct from multi-class classification which aims to predict a
single mutually exclusive label.

Reformulation: Each of the top 100 million queries on Bing
was treated as a separate label in the proposed reformulation. An
extreme classifier was learnt which took the trigger’s feature vector
as input and predicted the relevant subset of 100 million queries
as the recommended suggestions. Each trigger was represented by
its 64 dimensional CDSSM [18, 52] embedding as state-of-the-art
techniques have shown that low-dimensional dense deep embed-
dings [14, 16, 18, 25, 36, 49, 52] are better suited for representing
queries than high-dimensional sparse bag-of-words features used
in extreme classification thus far. Reformulating related searches
as a classification problem could help increase trigger coverage as
the extreme classifier was designed from the outset to make predic-
tions on previously unseen triggers. Suggestion density could also
be increased as the classifier was trained to predict from 100 mil-
lion labels (suggestions). Finally, the accuracy of recommendations
could also be increased as a high-capacity classifier with more than
6.4 billion parameters (not counting the CDSSM parameters) was
learnt so as to model the variability of tail queries.

State-of-the-art extreme classifiers: Leading extreme classi-
fiers such as DISMEC [3], PDSparse [64] and PPDSparse [63] scale
to about a million labels. Their training and prediction costs grow
linearly with the number of labels rendering them unsuitable for
the proposed reformulation. The state-of-the-art is represented by
Parabel [47] which cuts down both training and prediction costs
from linear to logarithmic. Unfortunately, Parabel has also not been
shown to scale beyond 10 million labels and it is unable to make
accurate predictions for low-dimensional features such as CDSSM.

Slice: Slice learns a separate linear classifier per label based on
the 1-vs-All approach. Given a training set of N examples in D
dimensions with L labels, Slice cuts down the training time from
O (NDL) to O (ND logL) by training each label’s classifier on only
O ( NL logL) of the most confusing negative examples rather than
on all N examples. This is achieved efficiently on the basis of a
novel negative sampling technique which is demonstrated to be
significantly more accurate for low-dimensional dense feature rep-
resentations than Parabel and PPDSparse’s negative sampling tech-
niques. Slice also cuts down the prediction time per test point from
O (DL) to O (D logL) by evaluating the classifiers of only the most
probable O (logL) labels rather than all L labels.

Experiments: Experiments were carried out on publically avail-
able benchmark extreme classification datasets based on state-of-
the-art deep learning XML-CNN [29] embeddings. Experiments
were also carried out on related searches datasets mined from the
Bing logs with queries represented using CDSSM [18, 52] embed-
dings. It was observed that Slice could surpass Parabel’s prediction
accuracies by as much as 16% on these datasets. Slice was also found
to increase the accuracy of recommendations by at least 10% as

compared to leading related searches techniques. Finally, on being
added to the related searches ensemble in production on Bing, Slice
was observed to increase the trigger coverage by 52%, the sugges-
tion density by 33%, the overall success rate by 2.6% and the success
rate for tail queries by 12.6%.

Contributions: This paper: (a) reformulates the related searches
problem as an extreme classification task; (b) develops the Slice
algorithm for extreme multi-label learning with low-dimensional
dense features that scales to 100 million labels and 240 million
training points and (c) demonstrates that Slice could significantly
improve related searches on Bing when deployed in production.
Slice’s source code can be downloaded from [21].

2 RELATEDWORK
Extreme multi-label learning: Much progress has recently been
made in extreme multi-label learning [1, 3, 6, 11, 12, 17, 22, 23, 28,
29, 37, 41, 46–48, 53, 54, 57, 60, 61, 63–65, 67–69] and details of
some of these methods can be found in Section 1 of the supplemen-
tary material. Unfortunately, none of these approaches have been
shown to scale beyond 10 million labels. Furthermore, the predic-
tion accuracy of some of these methods, including PPDSparse [63]
and Parabel [47], can degrade significantly on moving from high-
dimensional sparse bag-of-words features to low-dimensional dense
embeddings as reported in Section 4.

Negative sampling: Techniques for subsampling the negative
training points have been developed for various applications [30,
35, 36, 38, 42, 50, 62] but might not apply directly to extreme classi-
fication. For instance, negative sampling techniques for imbalanced
data [30, 38] focus on improving the AUC rather than on improving
scalability without sacrificing accuracy as is needed for extreme
multi-label learning. Similarly, the popular approach of subsam-
pling the negatives uniformly at random as done in traditional
recommender systems [35, 50, 62] or sampling according to the la-
bel frequency as done in language modelling [36] can lead to a large
loss in accuracy in extreme classification. The negative sampling
techniques that are most relevant to Slice are the ones developed
for scaling extreme classifiers such as PPDSparse and Parabel. Un-
fortunately, as discussed in more detail in Section 3, neither of these
techniques works well for low-dimensional dense features. Slice
therefore proposes a novel negative sampling technique based on a
generative model which can be evaluated accurately and efficiently
for low-dimensional dense features using Approximate Nearest
Neighbour Search (ANNS).

ANNS: A survey of ANNS can be found in [27]. Slice relies on the
state-of-the-art Hierarchical Navigable Small World Graph (HNSW)
algorithm [31] for sampling its negative training points efficiently.
While other algorithms [2, 10, 19, 26, 39, 58, 66] could also have been
used, HNSW was found to perform slightly better on the related
searches datasets. Note that the accuracy of HNSW and other ANNS
algorithms degrades as the dimensionality of the feature space
increases. Slice is therefore best suited for representations having at
most a few thousand dimensions rather than millions of dimensions
as in the bag-of-words case. Finally, ANNS should not be confused
with k-nearest neighbour (kNN) classification. While Slice relies
on ANNS for scalability during training and prediction, its 1-vs-All
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formulation is significantly more accurate than approximate kNN
classification based on HNSW as demonstrated in the experiments.

Related searches: Most related searches techniques can be cat-
egorized as being based on sessions information [7, 8, 13, 43, 51, 55],
the query-url, query-flow or term-query graphs [4, 33, 59], query
synthesis methods [20, 24] or deep learning techniques [55]. Unfor-
tunately, the trigger coverage, suggestion density and quality of rec-
ommendations could be poor for many of these techniques. For in-
stance, some sessions and query graph basedmethods [7, 43, 51] can
only recommend suggestions for previously seen triggers thereby
limiting their trigger coverage. The suggestion density could also
be limited for tail queries which weren’t issued in the same session
as a head query. Furthermore, intent changes within a session could
lead to poor recommendations. While many techniques have been
proposed to address these limitations [8, 55] they are often not
scalable or do not generate sufficiently diverse recommendations.

3 SLICE
Introduction: Designing multi-label classifiers that scale to 100
million labels and 240 million training points while maintaining
accuracy is an extremely challenging task. 1-vs-All approaches,
where a separate linear classifier is learnt per label, have surpassed
tree [1, 22, 23, 48, 53, 54] and embedding [6, 11, 12, 17, 28, 37, 60, 69]
based methods in terms of accuracy but face scalability issues due
to their linear training and prediction costs. A well established
approach to scale up training [47, 63] is to learn from all the positive
examples, as these are relatively few in number, and just a few of the
negative examples from the millions available. The key technical
challenge then lies in efficiently identifying and training on the
most confusing negative examples for each label. Slice therefore
efficiently estimates O ( NL logL) of these "hard" negatives based on
a generative model approximation of its discriminative counterpart
thereby reducing training time to O (ND logL). Slice also reduces
the prediction time to O (D logL) so as to meet the throughput
and latency requirements of real-world applications. Slice achieves
this by first finding the most probable positive labels using the
generative model and then evaluating discriminative classifiers
only for the shortlisted labels.

Discriminative model: Given a set of N independent and iden-
tically distributed training points {(xi , yi )Ni=1} with unit normalized
features lying on the D dimensional unit hypersphere xi ∈ SD and
L dimensional label vectors yi ∈ {−1,+1}L , Slice follows the multi-
label 1-vs-All approach and assumes that the joint label distribution
P(y|x) factorizes as the product of independentmarginal logistic dis-
tributions such that P(yi |xi ;WD , bD ) =

∏L
l=1 P(yil |xi ;w

D
l ,b

D
l ) =∏L

l=1

(
1 + e−yil (w

D⊤
l xi+bDl )

)−1
. The maximum a posteriori estimate

of Slice’s parameters can be obtained by solving the following L
independent optimization problems

wD
l ,b

D
l = argmin

wl ,bl

1
2
w⊤l wl +C

N∑
i=1

log
(
1 + e−yil (w

⊤
l xi+bl )

)
(1)

⇒ wD
l = C

N∑
i=1
P(−yil |xi ;wD

l ,b
D
l )yilxi (2)

where (2) can be obtained by differentiating (1) and equating to zero.
This indicates that the training points forwhichP(−yil |xi ;wD

l ,b
D
l ) <

ϵ contribute little to the optimal solution and can potentially be dis-
carded from the optimization procedure without a significant loss in
accuracy. Unfortunately, (2) is unhelpful in itself asP(−yil |xi ;wD

l ,b
D
l )

cannot be evaluated aswD
l andbDl are unknown. Furthermore, even

if P(−yil |xi ;wD
l ,b

D
l ) was accessible, evaluating it for all training

points and labels in order to determine which ones to keep and
which ones to discard would incur O (NDL) cost thereby defeating
the very purpose of subsampling.

Reducing complexity: Slice addresses these limitations by lever-
aging the popular assumption that the average number of posi-
tive labels per point is at most M logL [22, 46, 47] where M < 7
is a small constant across datasets (see Table 1). Slice approxi-
mates P(−yil |xi ;wD

l ,b
D
l ) by P(−yil |xi ;wG

l ,b
G
l ) using a generative

model which can be learnt in time O (ND logL). It then identifies
O
(
N
L logL

)
negative examples for each label having some of the

largest values of P(−yil |xi ;wG
l ,b

G
l ) using Approximate Nearest

Neighbour Search (ANNS) in time O ((N + L)D logL). Finally, Slice
is trained in timeO

(
N
L D logL

)
for each label by optimising (1) over

all the label’s positive examples as well as the negative examples
identified by ANNS for the label. Slice’s overall training complexity
is therefore O (ND logL) as N > L.

Generative model: Slice assumes that each training point i was
generated according to the following procedure. Each label l was
either independently activated (yil = +1) or deactivated (yil = −1)
with probability πl and 1 − πl respectively such that P(yi ;π ) =∏L

l=1 π
1
2 (1+yil )
l (1 − πl )

1
2 (1−yil ) . Having sampled the label vector

yi , a feature vector lying on the surface of the D dimensional unit
hypersphere SD was sampled from the distribution

P(xi |yi ) =



e
1
2
∑L
l=1 (1+yil )

(
γ +l x

⊤
i µ
+
l +Z

+
l

)
+(1−yil )

(
γ −l x

⊤
i µ
−
l +Z

−
l

)
, x ∈ SD

0, x < SD

with parameters {(γ+l ,γ
−
l , µ

+
l , µ
−
l )

L
l=1} where Z

±
l are normalizing

constants dependent on themodified Bessel function of orderD/2−1
evaluated at γ±l . The discriminative counterpart of the proposed
generative model can then be straightforwardly obtained as

P(yi |xi ;WG , bG ) = P(xi |yi ; {(γ+l ,γ
−
l , µ

+
l , µ
−
l )

L
l=1})P(yi ;π )/P(xi )

=

L∏
l=1

(
1 + e−yil (w

G⊤
l xi+bGl )

)−1
(3)

where wG
l = γ+l µ

+
l − γ

−
l µ
−
l and bGl = Z+l − Z

−
l + log

πl
1−πl . Under

perfect modelling conditions, and as the training data grows asymp-
totically, wG

l can converge to wD
l and bGl to bDl . As such, sampling

the negative training points from P(y|x;WG , bG ) might be almost
as effective as sampling from P(y|x;WD , bD ).

Tractability: Given that each training point has O (logL) pos-
itive labels on average (see the dataset statistics in Table 1), the
maximum likelihood estimates of {(µ±l )

L
l=1} can be obtained in

time O (ND logL) as µ+l =
∑
i :yil=1 xi

∥
∑
i :yil=1 xi ∥2

and µ−l =
µ−
∑
i :yil=1 xi

∥µ−
∑
i :yil=1 xi ∥2

where µ =
∑N
i=1 xi . Unfortunately, the concentration parameters

γ±l cannot be estimated efficiently [56]. As a result, neither can wG
l



or bGl (since Z±l depend on γ±l ). Furthermore, even if wG
l and bGl

were known, negative sampling by selectingO ( NL logL) of the nega-
tive training points having the highest values of P(−yil |xi ;WG , bG )
for each label l would incur O (NDL) cost if done exactly. These
problems can be ameliorated based on the observation thatγ−l could
be negligible as compared toγ+l as themillions of negative examples
could be far less concentrated than the small number of positive ex-
amples. For instance, the positive concentration could be a hundred
times larger than the negative concentration on the related searches
dataset with 100 million labels. Thus, γ−l µ

−
l can be negligible as

compared to γ+l µ
+
l (as ∥µ±l ∥2 = 1) leading to the approximation

wG
l = γ+l µ

+
l . This implies that, for a given label l , the negative

training points with the largest values of P(−yil |xi ;WG , bG ) will
be those with the largest values of µ+

⊤

l xi and that γ+l and bGl do not
need to be estimated as they do not affect the ranking of points for
the given label. These points will also have the smallest values of
∥µ+l − xi ∥

2
2 as

1
2 ∥µ
+
l − xi ∥

2
2 = 1− µ+

⊤

l xi and can therefore be deter-
mined approximately based on ANNS as follows. First, the HNSW
algorithm can be used to learn an ANNS data structure over the
training points xi in time O (ND logN ). Then, the data structure
can be queried with each µ+l to determine the negative training ex-
amples for label l asN x

l = {i |1 ≤ i ≤ N ,yil = −1, xi ∈ ANNS(µ+l )}
in time O (D logN ) per label. This would make negative sampling
both accurate and efficient. Unfortunately, this would not address
the equally critical problem of reducing prediction time. Low la-
tency and high throughput applications such as related searches
need to make predictions in milliseconds per test point and cannot
afford theO (DL) cost of applying all L classifiers during prediction.

Negative sampling: Slice therefore speeds up both training
and prediction by carrying out ANNS over the generative model
parameters µ+l rather than over the training points xi . The ANNS
data structure over µ+l can be learnt in time O (LD logL). It can
then be queried for all N training points xi in time O (ND logL) to
determine the set of labels S (xi ) = {l |1 ≤ l ≤ L, µ+l ∈ ANNS(xi )}
having the largest values of µ+

⊤

l xi for point i . Finally, for each
label l , the set of negative training examples N µ

l can be selected
such that N µ

l = {i |1 ≤ i ≤ N ,yil = −1, l ∈ S (xi )}. This leads to
an overall complexity of O ((N + L)D logL) for determining N µ

allowing it to be determined more efficiently thanN x. For instance,
identifying N x could take up to 7x more time and 4x more RAM
than identifyingN µ even on the small scale datasets. Furthermore,
training on either set of negative examples was found to be just
as effective since N µ was found to contain 75.76% of the points
having the highest values of P(−yil |xi ;wD

l , b
D
l ) while N x was

found to contain 77.77%. In fact, training on N µ yielded state-of-
the-art results matching the accuracies obtained by training on
all N points on almost all datasets and being just 1.5% lower on a
single dataset.

Comparison toParabel andPPDSparse: For low-dimensional
dense features, Slice’s negative sampling procedure compares favourably
with those used in PPDSparse [63] and Parabel [47] which represent
the state-of-the-art in extreme classification. Parabel learns a tree
over labels such that similar labels end up in the same leaf node.
Negative training examples for a label are selected by taking the

positive examples of all the other labels present in the same leaf as
the given label. The negatives therefore contain samples from the
most similar and confusing labels which are likely to get misclassi-
fied and are therefore critical for training. Unfortunately, Parabel’s
tree cannot be learnt accurately in low-dimensions as the linear
separator learnt at each internal node does not have enough capac-
ity to ensure that similar labels get partitioned together. Parabel
could therefore be up to 15% less accurate than Slice (see Table 2).

PPDSparse, like Slice, learns a separate linear classifier wl per
label. During each training iteration,wl is optimized over all of label
l ’s positive training examples as well as an active set of negative
examples. Negative examples are added to the active set at each
iteration if they are misclassified or violate the margin according
to the current estimate of wl . This can be done approximately in
O (N̂ D̂) time by evaluating w⊤l xi on D̂ rather than D features and
assuming that each feature occurs in only N̂ points on average
(accessed through an inverted index). Unfortunately, PPDSparse’s
negative sampling technique hasO (NDL) cost for low-dimensional
dense features, as N̂ = N when features are dense while D̂ ≈
D when they are low-dimensional (running PPDSparse with the
default low value of D̂ could reduce accuracy by up to 13%).

Training: Slice learns a linear classifier for each label l by op-
timizing (1) over the label’s positive training points Pl = {i |1 ≤
i ≤ N ,yil = +1} as well as the negative examples selected for that
label N µ

l . Note that (1) is convex and can be optimized efficiently
using Liblinear [15] for all L labels in O (ND logL) time as |Pl | =
|N

µ
l | = O

(
N
L D logL

)
on average. Slice’s overall training complex-

ity is therefore O (ND logL) for estimating µ+ + O (LD logL) for
constructing the HNSW data structure + O (ND logL) for selecting
N µ + O (ND logL) for optimising (1) = O (ND logL) in total.

Distributed and parallel implementation: One of the advan-
tages of Slice is that it can not only be learnt efficiently on a single
core but that it can also be parallelised across several cores of a
single machine or GPU or distributed across multiple machines.
Each of the L classifiers in Slice can be learnt in parallel as (1) can
be optimised independently for each label. Furthermore, Slice has
low network communication costs and memory requirements as
only O ( NL logL) points on average need to be transmitted over the
network or loaded into memory for learning a classifier. This is a
significant advantage over DiSMEC [3] and PPDSparse [63] which
require the entire training data to be transmitted or loaded in mem-
ory to train even a single classifier. As a result, unlike DiSMEC and
PPDSparse, Slice can be efficiently trained on large problems on
GPUs even when the training data does not fit in GPU RAM. All the
other parts of Slice’s pipeline including estimating µ+, constructing
the HNSW data structure and querying it for selecting N µ can be
parallelised. For instance, [9] provides details and code for parallel
HNSW data structure construction and querying. All these factors
put together allow Slice to efficiently scale to datasets with 100
million labels and 240 million training examples.

Efficient prediction: Extreme classification applications, in-
cluding related searches, require only the labels with the largest
values of P(yl |x) to be predicted for a test point x. Determining
such labels by evaluating P(yl |x) for all L labels, as done in DiS-
MEC, PDSparse and PPDSparse, would incur O (DL) cost making
such approaches infeasible for low-latency and high-throughput



applications. Slice addresses this limitation by shortlistingO (logL)
of the most probable labels according to P(yl |x,wG

l ,b
G
l ) and then

evaluating P(yl |x,wD
l ,b

D
l ) for these labels alone. Slice approxi-

mates wG
l = γµ+l (as γ−l µ

−
l is negligible) and bGl = b so that

P(yl |x,wG
l ,b

G
l ) =

(
1 + e−yl (γ µ

+⊤

l xi+b )
)−1

where γ and b can be
learnt through maximum likelihood estimation [45], by validation,
etc. It was empirically observed that setting γ = 1

L
∑L
l=l ∥w

D
l ∥2

and learning b by validation worked slightly better than maximum
likelihood estimation. The shortlist of most probable labels can then
be obtained as S (x) = {l |1 ≤ l ≤ L, µ+l ∈ ANNS(x)}. Note that the
shortlist can be obtained efficiently in time O (D logL) by reusing
the ANNS data structure learnt over µ+l during training and that this
would not have been possible had the data structure been learnt over
the points xi instead. Themarginal probabilities of the shortlisted la-
bels can then be obtained for both the discriminative and generative
models in time O (D logL). The final label probability is obtained
by marginalizing over the discriminative and generative models
as it is well recognized that the discriminative model will work
better for head labels having lots of training examples while the
generative model will work better for tail labels having only a few
training examples [40]. Assuming that P(wl ,bl ) =

1
2 (δ (w

D
l ,b

D
l ) +

δ (wG
l ,b

G
l )) yields P(yl |x) =

∫
P(yl |x,wl ,bl )P(wl ,bl )dwldbl =

1
2 (P(yl |x,w

D
l ,b

D
l ) + P(yl |x,wG

l ,b
G
l )). Slice’s overall predictions

for a test point x are therefore made in time O (D logL) by sorting
P(yl |x) for the shortlisted labels l ∈ S (x).

Extension to other loss functions: The arguments presented
thus far can be extended to other loss functions that align with the
log loss. The MAP estimate of wl for a differentiable loss function
L (yilw⊤l xi ) that decomposes over individual labels is given by
w∗l = C

∑N
i=1 α

∗
ilyilxi where α

∗
il = −∇yilw∗

⊤

l xi
L (yilw∗

⊤

l xi ). Slice
can be trained on losses for which there is a reasonable overlap
between the set of negative points having the largest values of α∗il
and P(−yil |xi ;wD

l ). For most classification losses L, this implies
that there should be reasonable overlap between L and the log loss
on the set of negative training points that are misclassified or are
close to the decision boundary – i. e. points for which yil = −1
andw⊤l xi is large. Such negative training points could be identified
efficiently through ANNS as they would have large values of µ+

⊤

l xi
allowing Slice to be trained accurately in logarithmic time. For
instance, as shown in Table 2, Slice was found to work particularly
well when trained using the hinge loss squared L = max(0, 1 −
yilw⊤l xi )

2 which is a popular loss for extreme classification [3, 47].

4 EXPERIMENTS
Datasets and features: Experiments were carried out on related
searches datasets mined from the Bing click logs. Each input trigger
was represented by its 64 dimensional Convolutional Deep Struc-
tured Semantic Model (CDSSM) [18, 52] embedding. The labels
for each trigger (data point) were chosen to be the set of sugges-
tions that had been clicked in response to the trigger. Results are
presented on datasets of varying sizes, ranging from 19 K to 101
M labels, as not all baseline algorithms were able to scale to the

Table 1: Dataset statistics

Dataset Train Features Labels Test Avg. labels Avg. points
N D L N ′ per point per label

EURLex-4K 11,585 1,024 3,956 3,865 5.32 15.59
RS-19K 739,563 64 19,450 184,891 1.01 38.52
Wikipedia-500K 1,646,302 512 501,070 711,542 4.87 16.03
Amazon-670K 490,449 512 670,091 153,025 5.45 3.99
RS-2M 37,178,983 64 1,944,958 12,390,515 1.53 29.26
RS-33M 133,263,449 64 33,104,673 33,311,373 1.44 5.78
RS-101M 240,754,546 64 101,135,892 38,774,604 1.32 3.14

larger datasets. Each dataset was randomly partitioned into 80% for
training and 20% for testing.

Experiments were also carried out on benchmark extreme multi-
label datasets publically available at The Extreme Classification
Repository [5] includingAmazon-670K [5, 6, 32],Wikipedia-500K [5]
and EURLex-4K [5, 34]. The state-of-the-art in deep learning for
extreme classification is XML-CNN [29]. Each dataset was there-
fore represented using low-dimensional, dense XML-CNN features
rather than the traditional high-dimensional, sparse bag-of-words
features available on The Repository. The XML-CNN features were
learnt on the train/test splits used in [29] and were graciously
shared by the authors. The experiments in this paper were there-
fore also carried out on the train/test splits used in [29], rather than
those available on The Repository, so as to ensure that there was
no leakage of information from the training to the test set.

Table 1 lists the statistics of all the datasets studied in this paper.
Most of the experiments on the publically available datasets were
carried out with the objective of reproducibly demonstrating that
Slice’s performance could be significantly better than all other ex-
treme classifiers on low-dimensional, dense features which aremore
suitable for representing queries than bag-of-words features. Thus,
while it is not this paper’s objective to obtain state-of-the-art results
with bag-of-words features, Table 1 of the supplementary material
nevertheless demonstrates that Slice’s prediction accuracies can
match those of leading extreme classifiers on the Amazon-670K
dataset. Finally, note that Slice was found not to be sensitive to the
choice of deep learning features and Table 2 of the supplementary
material reports the results for GloVE embeddings [44].

Baseline algorithms: Slice was compared to leading 1-vs-All,
embedding and tree based extreme classifiers including Parabel [47],
PPD-Sparse [63], PD-Sparse [64], DiSMEC [3], , SLEEC [6], LEML [67],
WSABIE [60], CPLST [11], CS [17] and PfastreXML [22]. The im-
plementations of all algorithms were provided by their authors
apart from CPLST and CS. These algorithms were implemented by
us while ensuring that the published results could be reproduced.
Results have been reported for only those datasets to which an
implementation scales. Results have been reported for Slice and
DiSMEC trained on both the log loss (-l) and the hinge loss squared
(-s). Results have also been reported for Slice-Generative which is
Slice with just the generative model where shortlisted labels are
ranked according to P(yl |x,wG

l ,b
G
l )∀l ∈ S (x ). Slice is also com-

pared to kNN-HNSW which is a kNN classifier using HNSW for
ANNS. Finally, Slice was compared to six state-of-the-art related
searches techniques, referred to as M1-M6, that are currently in pro-
duction in Bing and span the gamut of traditional approaches rang-
ing from those based on sessions information [7, 8, 13, 43, 51, 55]
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Table 2: Results on extreme classification datasets.

Method P1 (%) P3 (%) P5 (%) Training Test time
time (hr) / point (ms)

EURLex-4K

Slice-s 77.72 63.78 52.05 0.02 1.23
Slice-l 76.25 63.00 51.44 0.03 1.23
Slice-Generative 66.96 53.95 44.56 0.002 0.10
kNN-HNSW 76.02 61.91 49.99 0.015 0.24
DiSMEC-s 76.12 62.91 51.51 0.13 4.36
DiSMEC-l 76.04 62.66 51.37 0.25 4.36
Parabel 74.54 61.72 50.48 0.01 0.91
PPD-Sparse 76.32 62.79 51.40 0.013 4.36
PfastreXML 73.63 60.31 49.69 0.037 1.82
SLEEC 74.31 60.00 49.11 0.35 4.87
PD-Sparse 73.53 60.80 49.37 0.12 4.36
CS 58.01 44.85 35.50 0.01 140.10
LEML 60.34 47.45 37.96 0.67 2.24
WSABIE 76.09 61.69 49.11 0.13 2.24
CPLST 61.01 47.43 38.04 0.18 2.24

Amazon-670K

Slice-s (|S|=2000) 38.10 34.00 30.92 6.08 19.59
Slice-l (|S|=2000) 37.43 33.05 29.72 7.36 19.59
Slice-s 37.77 33.76 30.70 1.92 3.49
Slice-l 37.66 33.56 30.39 2.11 3.49
Slice-Generative 32.27 29.46 26.90 1.24 0.25
kNN-HNSW 31.44 28.02 25.49 1.52 0.37
DiSMEC-s 37.60 33.62 30.64 788.84 429
DiSMEC-l 35.11 30.86 27.69 1125.19 429
Parabel 33.93 30.38 27.49 1.54 2.85
PPD-Sparse 33.16 29.60 26.85 3.90 429
PfastreXML 28.51 26.06 24.17 2.85 19.35
SLEEC 18.77 16.50 14.97 7.12 22.54

Wikipedia-500K

Slice-s (|S|=2000) 62.62 41.79 31.57 15.61 11.14
Slice-l (|S|=2000) 61.27 40.90 30.89 21.17 11.14
Slice-s 59.89 39.89 30.12 2.34 1.37
Slice-l 59.01 39.51 29.40 3.08 1.37
Slice-Generative 43.10 28.37 21.89 0.87 0.15
kNN-HNSW 60.20 39.51 19.62 2.56 0.22
DiSMEC-s 63.70 42.49 32.26 2133 316.29
DiSMEC-l 62.11 41.26 31.35 3062.13 316.29
Parabel 59.34 39.05 29.35 6.29 2.94
PPD-Sparse 50.40 33.15 25.54 5.85 316.29
PfastreXML 55.00 36.14 27.38 11.14 6.36

to the query-url/flow/term graphs [4, 33, 59] to query synthesis
methods [20, 24] to deep learning techniques.

Hyper-parameters: Slice has three hyper-parameters: (a) the
number of shortlisted labels |S| retrieved by HNSW; (b) the bias
parameter b in the generative model and (c) the misclassification
penaltyC in the loss. The bias b was set by validation while default
settings of |S| = 300, C = 1 for the hinge loss squared and C = 10
for the log loss were used on all datasets. HNSW was also run with
the default hyper-parameter settings ofM = 100, efC = 300 and
efS = |S|. Finally, results have also been reported for |S| = 2000 on
Amazon-670K and Wikipedia-500K. The hyper-parameters of the
other algorithms were set as suggested by their authors wherever
applicable and by fine-grained validation otherwise.

Table 3: Results on small-scale related searches datasets.

Method P1 (%) P3 (%) P5 (%) Training Test time
time (hr) / point (ms)

RS-19K

Slice-s 77.94 29.69 18.28 0.18 0.44
Slice-l 77.70 29.82 18.35 0.44 0.44
Slice-Generative 70.01 27.73 17.30 0.08 0.03
kNN-HNSW 74.69 29.13 17.76 0.55 0.06
DiSMEC-s 77.52 29.51 18.16 11.46 2.99
DiSMEC-l 77.90 29.88 18.41 41.74 2.99
Parabel 62.61 26.28 16.63 0.50 1.16
PPD-Sparse 69.54 28.38 17.74 0.19 2.99
PfastreXML 74.05 28.40 17.52 0.76 1.18
SLEEC 38.08 21.10 14.48 2.17 10.65

RS-2M

Slice-s 25.59 17.11 13.14 12.97 0.47
Slice-l 23.68 16.42 12.84 29.67 0.47
Slice-Generative 19.97 13.98 11.06 4.33 0.05
kNN-HNSW 23.26 16.03 12.49 48.48 0.14
Parabel 16.25 11.94 9.7 38.76 1.00
PPD-Sparse 12.40 9.00 7.58 167.96 380.9
PfastreXML 21.10 14.06 10.82 163.86 1.17

Evaluationmetrics: Performancewas evaluated using precision@k
and nDCG@k (with k = 1, 3 and 5) which are widely used met-
rics [1, 3, 6, 29, 48, 63, 64, 68] for extreme classification andwhich are
defined in the supplementary material. Performance has also been
evaluated in the supplementary material using propensity scored
precision@k which has recently been shown to be an unbiased,
and more suitable, metric [22]. The propensity model and values
available on The Repository were used. In addition, the training and
prediction times of various algorithms have also been benchmarked
on a single core of a 16 core Intel Xeon 2.3 GHz machine.

Results on small datasets: Tables 2 and 3 benchmark Slice’s
performance on datasets where many state-of-the-art extreme clas-
sifiers could scale. Slice’s prediction accuracy could be up to 13%
higher than PPDSparse’s and 15% higher than Parabel’s. This vali-
dates Slice’s approximations and shows that Slice’s negative sam-
pling technique could be significantly more accurate than those
of Parabel and PPDSparse for low-dimensional, dense features. In
fact, Slice’s negative sampling technique could be just as effective
as training on all the negative points as Slice’s prediction accuracy
could match DiSMEC’s (except on Wikipedia-500K). At the same
time, Slice’s negative sampling technique and label shortlisting
procedure allowed it to be up to 10x and 500x faster at training and
up to 100x faster at prediction than PPDSparse and DiSMEC respec-
tively. The results also demonstrate the following about Slice. First,
while the proposed negative sampling technique was developed for
the log loss (Slice-l), it generalizes well to other losses such as the
hinge loss squared (Slice-s) that align with the log loss. Second, the
importance of the proposed discriminative model can be judged
from the fact that it could boost prediction accuracy by as much as
20% when added to the generative model (Slice-Generative). Third,
Slice could be up to 8% more accurate as compared to kNN-HNSW
even though both rely internally on HNSW based ANNS to cut
costs from linear to logarithmic. Both these points highlight the
advantage of Slice’s proposed model over kNN classification.
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Table 4: Slice’s precision@k , nDCG@k , training time and prediction time on the large-scale related searches datasets.

Dataset Method P1=N1 (%) P3 (%) P5 (%) N3 (%) N5 (%) Training time (min) Test time/point (ms) Model
THNSW TN µ TwD tS ty size (GB)

RS-33M Slice-Generative 11.80 8.82 7.19 16.7 19.4 150 - - 0.84 - 35.30
Slice-s 16.99 11.72 9.13 22.19 14.96 150 19.23 29.27 2.5 0.44 43.77

RS-101M Slice-Generative 2.45 3.11 3.07 6.39 9.08 425 - - 1.26 - 77.31
Slice-s 5.08 4.94 4.40 10.90 13.96 425 40.05 84.10 2.95 1.05 103.17

Table 5: Slice makes significantly more accurate predictions
as compared to leading related searches algorithms in Bing.

Dataset Method P1=N1 (%) P3 (%) P5 (%) N3 (%) N5 (%)

M1 42.14 27.44 20.66 40.29 40.17
M2 38.15 27.35 21.87 38.16 39.35
M3 22.62 17.84 14.75 25.46 27.44

RS-2M M4 23.09 12.96 8.85 19.98 19.05
M5 15.05 7.59 4.93 11.90 11.00
M6 12.73 7.04 4.54 11.20 10.57

Slice-s 43.08 31.10 24.81 45.40 47.60

M1 35.26 24.43 18.89 32.53 31.89
M2 25.44 21.07 18.06 26.99 28.83
M3 16.18 13.72 12.02 17.35 18.73

RS-33M M4 31.30 22.19 16.86 29.76 29.34
M5 21.73 13.57 9.69 18.60 17.55
M6 16.34 14.63 11.69 18.94 19.77

Slice-s 39.21 29.67 24.15 39.08 40.19

Performance on tail labels: Table 3 in the supplementary ma-
terial shows that Slice’s performance gains arose from the accurate
prediction of many tail labels and not just a few head labels. Slice
outperformed all other extreme classifiers according to propensity
scored precision (PSP) which is a more suitable loss function [22] for
extreme classification and recommendation as it is unbiased with
respect to missing labels in the ground truth and assigns greater
rewards for the accurate prediction of tail labels. Slice’s PSP could
be up to 3% and 4% higher than any other classifier’s (including
DiSMEC’s) on Amazon-670K and Wikipedia-500K respectively. Fig-
ure 1 in the supplementary material also shows that Slice’s (vanilla)
precision per tail label could be higher than DiSMEC’s.

Results on large datasets: Table 4 presents Slice-s and Slice-
Generative’s results on the RS-33M and RS-101M datasets which are
well beyond the scaling capabilities of all other extreme classifiers.
Slice could be trained efficiently on RS-101M in about 9 hours in
a distributed fashion as discussed in Section 3 and could make
predictions in under 5 milliseconds per test point. HNSW was
trained (THNSW) in about 7 hours on 32 cores of an Intel Xeon 2.3
GHzmachine. The negative training examples were identified (TN µ )
and all 101 million discriminative classifiers were learnt (TwD ) in 40
and 84 minutes respectively on 10 cores each of 100 Intel Xeon 2.3
GHz machines. During prediction, the set of shortlisted labels for
a given test point (tS ) were determined in 2.95 milliseconds while
the final predictions (ty) were made in another 1.95 milliseconds.

Table 6: Slice’s coverage@k on the RS-101M dataset.

C1 (%) C3 (%) C5 (%) C10 (%) C15 (%) C20 (%)

24.70 45.25 59.41 82.11 94.42 99.31

The importance of the proposed discriminative model can again be
judged from the fact that adding it to the generative model yielded
relative improvements of 107%, 59% and 43% in precision@1, 3
and 5 respectively. Further inspection of Slice’s top 5 and top 15
predictions per point on the RS-101M dataset revealed that they
covered more than 59 and 95 million unique labels respectively (see
Table 6). Almost all of the 101 million labels were covered in the
top 20 predictions per point. Slice’s strong performance is therefore
achieved not by recommending just a few frequently occurring,
easy to predict, head labels but by recommending rare, hard to
predict, tail labels. Scaling to large datasets is therefore critical for
making recommendations from diverse suggestions for tail triggers.

Comparison to related searches methods: Table 5 compares
Slice’s offline prediction accuracy to that of leading related searches
methods anonymized as M1-M6. Note that the accuracy of some of
thesemethodsmight be low as theywere unable tomake recommen-
dations for previously unseen triggers. Such triggers were therefore
excluded from the test sets and only those triggers for which all
methods M1-M6 could recommend at least one suggestion were
retained. This allows the comparison to focus on recommendation
accuracy without worrying about trigger coverage. Unfortunately,
the prediction accuracies of M1-M6 were still low as reported in
Table 4 in the supplementary material. Many irrelevant recommen-
dations could be eliminated by restricting their predictions to the
set of 2 or 33 million labels that Slice was trained on. Even in this
restricted setting, Table 5 shows that Slice’s accuracy could be up
to 8% higher than all other related searches methods.

Table 7: Relative improvements in onlinemetrics when Slice
was added to the ensemble serving related searches on Bing.

Trigger Suggestion CCR Success Quick back
coverage (%) density (%) (%) rate (%) rate (%)

52.01 33.0 2.88 2.62 -0.93

Live deployment onBing: Table 7 reports the relative improve-
ments in onlinemetrics when Slicewas added to the related searches
ensemble in production in Bing. Slice was able to increase the num-
ber of triggers for which at least 8 suggestions were recommended
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Table 8: Slice’s accuracy does not vary much on Amazon-
670K if HNSW was replaced by LSH or exact NN search.

Exact NN HNSW LSH Random

Precision@1 (%) 37.85 37.77 35.21 24.67
Precision@3 (%) 33.83 33.76 32.22 22.32
Precision@5 (%) 30.73 30.70 29.53 20.41
Training time (hr) 58.79 1.92 1.93 0.47
Test time/point (ms) 429 3.49 11.55 429
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Figure 1: The variation in Slice’s (a) accuracy, (b) training
time & (c) prediction time on Amazon-670K with the size of
the label shortlist |S|. The variation in Slice’s accuracy with
the bias parameter b is shown in (d).

(trigger coverage) by 52%. Slice also increased the number of sug-
gestions being recommended per trigger (suggestion density) by
33%. A relative improvement of 2.88% was observed in the con-
ditional click-through rate (CCR) defined as the ratio of the total
number of clicks on suggestions to the total number of pages on
which suggestions were displayed. At the same time, the number of
triggers for which the user clicked on an irrelevant suggestion and
then quickly hit the back button on the browser (quick back rate)
was reduced by 0.93%. Finally, Slice was found to improve task-
completion with a 2.62% increase in the overall success rate defined
as the ratio of the total number of related searches clicks which led
to a subsequent organic search click with long dwell time to the
total number of pages on which suggestions were displayed. The
success rate for the most infrequently occurring triggers went up
by 12.62%. This is particularly noteworthy as almost all traditional
related searches methods fail in the tail and getting performance
improvements for tail triggers is known to be notoriously hard.
These results demonstrate Slice’s effectiveness and the advantages
of reformulating related searches as an extreme classification task.

Qualitative results: Table 5 in the supplementary material com-
pares Slice’s suggestions for a few triggers to those recommended by
the ensemble currently in production in Bing. Slice recommended
more suggestions than Bing and with greater relevance and diver-
sity. For instance, as already discussed in the Introduction, Bing

recommended the single irrelevant, but lexically similar, suggestion
“cam newton shoulder surgery” in response to the trigger “cam pro-
cedure shoulder”. On the other hand, all of Slice’s recommendations
were relevant for a user looking to learnmore about the Comprehen-
sive Arthroscopic Management (CAM) shoulder surgery procedure.
Slice’s suggestions included “shoulder surgery procedures”, “cost
of arthroscopic shoulder surgery”, “shoulder replacement surgery
success rate”, “recovery from arthroscopic shoulder surgery”, etc.
which covered diverse facets of the trigger such as surgery cost,
recovery expectations, alternatives and their success rates. Similar
trends were observed for other triggers.

Ablations: Table 8 shows that Slice’s accuracy was not very
sensitive to the choice of the ANNS method as it did not vary
significantly if HNSW was replaced by Latent Semantic Hashing
(LSH) [2] or even exact NN search. This validates the use of ANNS
for low-dimensional dense features. Slice therefore relies on HNSW
as it speeded up training and prediction by 30x and 123x respectively
over exact NN search and also speeded up prediction by 3x over LSH.
Table 8 also reconfirms the importance of Slice’s negative sampling
procedure as replacing it by random sampling reduced accuracy
by more than 10%. Figure 1 (a)-(c) shows that |S| = 300 leads to
a good trade-off between accuracy, training time and prediction
time as precision@3 saturates soon after that while training and
prediction time continue to grow linearly. Finally, Figure 1 (d) shows
that Slice’s precision@3 varied by less than a percent with the bias
hyper-parameter and was therefore robust to the choice of b.

5 CONCLUSIONS
This paper reformulated the problem of recommending related
queries on a search engine as an extreme classification task. It devel-
oped the Slice algorithm specifically designed for low-dimensional,
dense, deep learning features popularly used to represent queries.
Slice cut down training and prediction time from linear to logarith-
mic in the number of labels based on a novel negative sub-sampling
technique. The proposed technique was demonstrated to be just as
effective as training on all the negative examples and significantly
more accurate than those proposed in Parabel and PPDSparse. This
allowed Slice to match DiSMEC’s accuracies while being many or-
ders of magnitude faster at training and prediction. It also allowed
Slice to efficiently train on related searches datasets having 240
million points and 100 million labels which are well beyond the
scaling capabilities of all other extreme classifiers.

The proposed reformulation was shown to alleviate some of the
problems of traditional related searches methods in recommending
suggestions for tail triggers. When added to the ensemble of leading
related searches algorithms currently in production in Bing, Slice
led to a relative increase of 52% in the trigger coverage, 33% in
the suggestion density, 2.88% in the conditional click-through rate,
2.62% in the overall success rate and a decrease of 0.93% in the quick
back rate. The gains for tail triggers were particularly noteworthy
as a 12.62% improvement was observed in the success rate.
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