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Abstract

Our objective is to obtain a state-of-the art object cate-

gory detector by employing a state-of-the-art image clas-

sifier to search for the object in all possible image sub-

windows. We use multiple kernel learning of Varma and

Ray (ICCV 2007) to learn an optimal combination of expo-

nential χ2 kernels, each of which captures a different fea-

ture channel. Our features include the distribution of edges,

dense and sparse visual words, and feature descriptors at

different levels of spatial organization.

Such a powerful classifier cannot be tested on all image

sub-windows in a reasonable amount of time. Thus we pro-

pose a novel three-stage classifier, which combines linear,

quasi-linear, and non-linear kernel SVMs. We show that

increasing the non-linearity of the kernels increases their

discriminative power, at the cost of an increased compu-

tational complexity. Our contributions include (i) showing

that a linear classifier can be evaluated with a complex-

ity proportional to the number of sub-windows (indepen-

dent of the sub-window area and descriptor dimension);

(ii) a comparison of three efficient methods of proposing

candidate regions (including the jumping window classifier

of Chum and Zisserman (CVPR 2007) based on proposing

windows from scale invariant features); and (iii) introduc-

ing overlap-recall curves as a mean to compare and opti-

mize the performance of the intermediate pipeline stages.

The method is evaluated on the PASCAL Visual Object

Detection Challenge, and exceeds the performances of pre-

viously published methods for most of the classes.

1. Introduction

Our objective in this paper is object category detection:

the task of determining if one or more instances of a cat-

egory are present in an image and, if they are, localize all

instances by specifying tight bounding boxes around them.

The simpler task of image classification, where all that must

be determined is if there is a class instance in the image (but

not localization), has enjoyed quite some success recently.

For the Caltech 101/256 databases [12] high performance

has been achieved by (i) using multiple feature types [25];

(ii) including spatial information [14]; and (iii) optimizing

the combination of features and spatial pyramid levels using

multiple kernel learning [21] for an SVM classifier. These

state-of-the-art performances are achieved for images that

for the most part are well aligned, where the object domi-

nates the image and where there is little background clutter.

The questions we investigate here1 are: (i) can these

methods for image classification be successfully applied to

detection? i.e. to localize the object under much more chal-

lenging conditions (pose variation, background clutter); and

(ii) if they can be used as a detector, how does their per-

formance compare to the state of the art? As a test bed

we use the PASCAL Visual Object Classes (VOC) training

and testing data, since state of the art detectors are annually

compared on these images [9].

A natural starting point is to apply the state-of-the-art

image classifier of [21] as a sliding window detector, in the

manner of Viola and Jones [24]. However, a naive imple-

mentation is computationally infeasible because: (i) regions

must be searched over position, scale, and aspect ratio, (ii)

each region is described by high dimensional feature his-

tograms (due to the combination of multiple feature chan-

nels and spatial subdivisions), and (iii) the classifier uses

non-linear kernels and thousands of support vectors.

While methods to accelerate the relevant computations

have been proposed in [13, 16], we show in Sec. 3 that they

do not achieve a sufficient speed-up if the most powerful

model is to be used. As in [24], we therefore adopt a cas-

cade approach, and to this end, we introduce a novel multi-

stage classifier, where each stage employs a more powerful

(and expensive) classifier that is a closer approximation to

our goal. In Sec. 3.1 we compare three very fast classifiers

that are suitable for the first stage of the cascade. The first

two are linear classifiers (again consisting of multiple ker-

nels) that we compute extremely efficiently from a single

1We regret any confusion caused by the BMVC 08 paper by Bosch,

Gulshan, Varma and Zisserman which we withdrew. The algorithms and

results here should be taken as a replacement for the BMVC 08 paper.



integral image. This saving was not employed in previous

work and is essential if high dimensional feature histograms

are used. The first classifier uses fixed aspect windows as

is very commonly done [1, 7, 10], and the second consid-

ers multiple aspect ratios learned from the data. The third

classifier is a ‘jumping window’ [6] which, again, is able to

model the aspect ratio variation in the training set. The out-

put of these classifiers is a set of candidate regions, about

2000, for each image, that are then passed onto the more

powerful classifiers of the later stages of the cascade. To

compare the performance of the three types we introduce a

recall-overlap performance curve.

In Sec. 3.2 we discuss the second and third stages, which

are based on the more expensive quasi-linear χ2 and non-

linear RBF-χ2 kernels respectively. While evaluating the

quasi-linear classifier is independent of the number of sup-

port vectors, the necessity of computing a large number

of high dimensional histograms for each candidate region

makes this classifier about a thousand times slower than the

classifiers used in the first stage. Finally, we pass to the last

stage around 100 candidates. The last stage is overall the

slowest, even for the very small number of candidates on

which it is evaluated, due to both the large number of sup-

port vectors and the high dimensionality of the histograms.

In Sec. 3.3 we discuss how the feature histogram normal-

ization affects both efficiency and modeling quality.

We describe the features and implementation details in

Sec. 4.1, the learning strategy in Sec. 4.2, and evaluate the

performance in Sec. 5. We apply this approach to the PAS-

CAL VOC challenge and show that indeed, the MKL image

classifier can be ported to a detector, and that this approach

surpasses in most cases all other methods todate that have

reported results on this dataset.

Related work. The method most similar to ours is the IN-

RIA PlusClass entered in the PASCAL VOC Challenge [9].

While both our and their method share the use of multiple

features and a cascade, their emphasis is on the use of con-

textual information, while ours is on improving the quality

and efficiency of the object representation. So for instance

they use a cascade of two rather than three stages, and two

feature channels rather than six (and eighteen kernels) as

we do. While exploiting context is an interesting route to

explore, currently our method outperforms theirs in all but

a few categories without using contextual information.

Other relevant work will be discussed where appropriate

throughout the text.

1.1. The PASCAL VOC Detection Challenge

The PASCAL Visual Object Detection Challenge

(VOC) [9] data consists of a few thousand images annotated

with bounding boxes for objects of twenty categories (e.g.,

car, bus, airplane, ...). The detection challenge is the fol-

lowing: predict the bounding box and label of each object

from the target classes in a test image. Each bounding box

is output together with a confidence value, and this value is

used to generate a precision-recall graph for each class. De-

tections are considered true or false positives based on their

overlap with ground truth bounding boxes. The overlap be-

tween a proposed bounding boxR and the ground-truth box

Q is computed as

area|Q ∩R|

area|Q ∪R|
. (1)

An overlap of 50% or greater is labeled as true positive.

Any additional overlapping bounding box (duplicate detec-

tions) are rejected as false positives. Performance is then

measured by the average precision (AP). Full details of the

challenge, including the results of all participants, are given

at [9].

2. Multiple kernel sliding-window classifier

Our aim is to learn an SVM classifier [19] where, rather

than using a pre-specified kernel, the kernel is learnt to be a

linear combination of given base kernels [2, 21]. The clas-

sifier defines a discriminant function C(hR) that is used to

rank candidate regions R by the likelihood of containing

an instance of the object of interest. The classifier argu-

ment hR is a collection of feature histograms h
R = {hR

fl},

for multiple feature channels f and spatial pyramid lev-

els l (Sec. 4.1). Captial letters HR
fl will denote the un-

normalized histograms, i.e. the raw feature count. Note that

hR
fl = HR

fl/‖H
R
fl‖ where ‖ · ‖ denotes l1 or another appro-

priate norm.

The function C(hR) is learnt, along with the optimal

combination of features and spatial pyramid levels, by using

the Multiple Kernel Learning (MKL) technique proposed

in [21]. The function C(hR) is the discriminant function of

a Support Vector Machine (SVM), and is expressed as

C(hR) =

M
∑

i=1

yiαiK(hR,hi). (2)

Here h
i, i = 1, . . . ,M denote the descriptors of M train-

ing regions, selected as representative by the SVM, yi ∈
{+1,−1} their class labels, and K is a positive definite

(PD) kernel, obtained as a liner combination of histogram

kernels

K(hR,hi) =
∑

fl

dflK(hR
fl, h

i
fl). (3)

MKL learns both the coefficient αi and the histogram com-

bination weights dfl ≥ 0. Following the method of [4],

a different set of weights {dfl} are learnt for each class

as detailed in Sec. 4.2. Weights can therefore emphasise

more discriminative features for a class or pyramid level,



and even ignore features/levels that are not discriminative

by setting dfl to zero.

Because of linearity, (2) can be rewritten as

C(hR) =
∑

fl dflC(hR
fl), where

C(hR) =

M
∑

i=1

yiαiK(hR, hi) (4)

for each histogram hR = hR
fl and hi = hi

fl.

Choice of elementary kernelsK(h, hi). We consider three

types of kernels, differing in their discriminative power and

computational cost. Our gold standard, and most expensive,

classifier [21] uses non-linear RBF-χ2 kernels of the form

K(h, hi) = e−γχ2(h,hi). (5)

We also consider “quasi-linear” kernels of the form

K(h, hi) =
1

2
(1 − χ2(h, hi)) (6)

and linear kernels of the form

K(h, hi) = 〈h, hi〉. (7)

In total six features are used (including bag-of-words,

dense visual words, self-similarity descriptors, and edge

based descriptors) and three pyramid levels for each (cor-

responding to one, four, and sixteen spatial subdivisions),

with a kernel corresponding to each feature (Sec. 4.1).

Therefore 18 weights dfl need to be learned for their lin-

ear combination.

3. Inference cost and cascade

The main technical obstacle is searching for the best

matching region R∗, i.e. solving the inference problem

R∗ = argmaxR C(hR). This applies to learning as well,

as this is done by bootstrapping and entails performing in-

ference multiple times (Sec. 4.2).

Exhaustive search requires a number of operations pro-

portional to the number N of regions R to be tested, the

dimensionality B of the histograms, and the number M of

support vectors in the calculation of C(hR), i.e. the com-

plexity is O(BNM). As will be seen, this complexity is

prohibitively expensive as in our case N ≈ 105 (because

we search over translation, scale, and aspect ratio),B ≈ 104

(because we combine several high dimensional histograms)

and M ≈ 103. In the following we first introduce a taxon-

omy of kernels, and then discuss for each type of kernel if,

and how, this cost can be reduced. In particular we show

that for a linear kernel the complexity can be reduced to

O(N).

Kernel taxonomy. All popular histogram kernels are of

one of the following types: linear, quasi-linear (e.g. χ2,

intersection, Hellinger’s), and non-linear (e.g. RBF). This

taxonomy can be characterized as follows. Let b be the his-

togram bin index; all such kernels may be written as

K(h, h′) = f

(

B
∑

b=1

g(hb, h
′
b)

)

(8)

for a choice of the functions f : R → R and g : R
2 → R.

For linear kernels, both f and g are linear functions, and for

a quasi-linear kernel only f is linear:

type example f(z) g(x, y) eval. complexity

linear linear z xy O(N)
quasi-lin. χ2 z 2xy

(x+y)
O(BN)

non-lin. RBF-χ2 e−γz (x−y)2

(x+y)
O(MBN)

SVM evaluation cost. The major bottleneck in performing

inference is the calculation of the histograms h
R for all the

N regions R for which the classifier C(hR) must be evalu-

ated. Denote by Hp the feature count for pixel p; then the

un-normalized histogram HR for the region R (i.e. the raw

feature count) can be written as

HR =
∑

p∈R

Hp. (9)

This calculation requires at least Ω(BN) operations as all

bins must be visited at least once. In our caseBN ≈ 109, so

just computing all the SVM inputs h
R is prohibitively slow.

Cascade. Our solution is to use a cascade of increasingly

powerful classifiers. As seen, it is crucial that the first stage

avoids computing explicitly all the histograms h
R. There-

fore we introduce a technique to evaluate C(hR) without

computing h
R if a linear kernel is used. The intermediate

stage uses a better model (quasi linear kernel) for which a

known speed-up can be applied [16]. The last stage uses

the most powerful and expensive model (non-linear kernel),

but it is evaluated on a small number of candidate regions

which have been filtered by previous cheaper stages.

3.1. First stage: Fast SVM vs jumping window

The first stage of the classifier proposes candidate re-

gions which are then classified by the more powerful, but

slower, later stage classifiers. An ideal first stage of a cas-

cade should: (i) reject all regions that do not contain an

object instance; (ii) keep all regions that do contain an ob-

ject instance; and (iii) do this at low cost. Of course, such

an ideal first stage would then also be an ideal detector, and

the subsequent stages would not be required. In practice,

there is a trade-off between (i) and (ii): we seek an operat-

ing point that rejects as few true regions as possible (high

recall), whilst rejecting as many false regions as possible



(high precision). We introduce below a curve for quantify-

ing this trade-off. First, we describe and compare the three

types of classifiers suitable for the first stage of the cascade.

Fast linear SVM. For a linear SVM and an un-normalized

histogram

C(HR) =

M
∑

i=1

yiαi〈H
i, HR〉 (10)

and, as is well known for this case, the sum over support

vectors can be precomputed as w =
∑M

i=1 yiαiH
i, so that

evaluating C(HR) = 〈w, HR〉 is independent of M . How-

ever, the evaluation cost is still O(BN) and we show here

that, for un-normalized or l1-normalized histograms, the

linear SVM can be evaluated in time which is proportional

to the number N of regions only. The reason is that the

bin dimension b can be projected on the linear SVM weight

vector before the discriminant scores C(HR) are evaluated,

thus removing the factor B from the complexity. Using (9)

and C(HR) = 〈w, HR〉 one obtains

C(HR) =

B
∑

b=1

wbH
R
b =

B
∑

b=1

wb

∑

p∈R

Hp
b

=
∑

p∈R

(

B
∑

b=1

wbH
p
b

)

=
∑

p∈R

ψ(p)

where ψ(p) =
∑B

b=1 wbH
p
b , i.e. the summations over p can

be moved outside the sum over b. Thus evaluating the un-

normalized linear SVM C(HR) reduces to first calculating

the integral image of the score map ψ(p) (in O(P ) time if

at most a constant number of features occur for each pixel)

and then computing the score for each of theN regionsR in

time O(N). To calculate C(hR) for an l1-normalized his-

togram it is also necessary to repeat the process for the mass

map M(p) =
∑B

b=1H
p
b in order to normalize the scores,

but the complexity is the same. Thus, evaluating the linear

SVM requires O(N + P ) operations only, which is inde-

pendent of both the number of histogram bins B and sup-

port vectorsM . Consequently, evaluating the linear SVM is

feasible even for a number of regions as large as N ≈ 105.

However, as will be discussed in Sec. 3.3, a bias is intro-

duced by not l2-normalizing the histograms, which favors

either small (in case of l1 normalization) or large (in case of

no normalization) regions. Because of this bias, regions can

be reliably compared only if they have roughly the same

size. Thus candidate regions are grouped by size and an

equal number of highly-ranked regions from each group are

extracted.

The SVM classifiers slides 100–200 representative

bounding boxes that span the characteristic scales and as-

pect ratios of the object category. Each box is translated by

steps of 10% its size to cover the image support.

The representative boxes are obtained as centers of clus-

ters of training bounding boxes constructed by running ag-

glomerative clustering based on the overlap measure (1).

We consider also a fixed-aspect variation of the SVM clas-

sifier for which the cluster centers may vary in scale but are

constrained to have the same aspect ratio.

Jumping window. This is the approach of Chum and Zis-

serman [6]. Discriminative visual words [5] are learnt for

the object class (from the training and a negative set), and

their distribution in each image determines the candidate

proposals. Discriminability is measured using the likeli-

hood ratio discriminability function D of [8],

D(w) ∼
#target object instances containing w

#object instances containing w
.

and provides a ranking of the visual words.

Individual discriminative visual words are used to gen-

erate a hypotheses for the class instance location. In detail,

a hypothesis is a pair (w,R) of visual word w and a rect-

angular region R. The rectangle represents the regions with

fixed relative position and scale with respect to the posi-

tion and scale of the visual word w. The pairs (w,R) are

learnt from the provided regions of interest in the training

images. In the training images there will be a number of

rectangles Ri associated with w; similarly to [17], these are

aggregated into a single rectangle using mean-shift cluster-

ing (using [23] for speed).

Comparison. Evaluation of both the linear SVMs is fast,

requiring overall only two to three seconds per image, but

the jumping window is even faster (under a second for each

image). In order to compare the quality of the candidates

produced by the three methods, and to establish a reason-

able trade-off between speed (of the next cascade stages),

precision and recall, we introduce the recall-overlap curves.

Given a number of candidate regions per image, the recall-

overlap curve is obtained by measuring the recall rate of the

ground-truth object bounding boxes for a given minimum

overlap (1).

These curves can be used to compare the recall rates of

the three classifiers at any level of overlap. Assuming that

the later stages of the classifier require sufficient overlap of

the candidates with the ground truth, we choose 80% over-

lap as our operating point. It is clear from Fig. 1 that the

jumping window performs best at this point – and it is also

faster than the sliding window linear classifier, so it is the

clear choice for the first stage. 2000 candidates are selected

as this gives a 70% recall rate, and this is an upper bound

on the recall for the next stages.

3.2. Second and third stages

Our second and third stages use respectively a “quasi-

linear” (reducing the candidates to 100) and non-linear ker-
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Figure 1. Recall-Overlap curves for the three first stage classifiers. The quality of the candidates generated by three different methods

is compared: (a) linear SVM sliding windows of multiple scales but single aspect ratio; (b) linear SVM sliding windows of multiple scales

and aspect ratios; (c) jumping window (also using multiple scales and aspect ratios). This example is from the class car, but other classes

are qualitatively similar. The figure shows overlap-recall curves for 1, 10, 100, 500, 2,000, 5,000 and 10,000 candidates and reports the

AUC for each curve. 2,000 of such candidates are then filtered by two additional pipeline stages. Thus the goal is to obtain high recall and

overlap for the 2,000 candidate curve. For instance, at 80% minimum overlap, the linear SVM with fixed aspect ratio achieve only 30%

recall. Optimizing over aspect ratios improves this result to about 50% and 60% for respectively the linear SVM and the jumping window.

Notice also that the jumping window performs better in most cases (and is much faster than the linear SVM).

nels (yielding the final scores, to which non-maxima sup-

pression is applied as explained in Sect. 4.2). For general

non linear kernels, the evaluation of C(hR) requires com-

paring the histogram hR of each region R to each of the

M support vector histograms hi. For B bins and N re-

gions, this requires O(BNM) operations. For quasi-linear

kernels [16] show that (2) can be approximated in O(BN)
time (i.e. independent of the numberM of support vectors).

This is done by rewriting (4) as

C(h) =

M
∑

i=1

yiαi

B
∑

b=1

g(hb, h
i
b) =

B
∑

b=1

ψb(hb) (11)

where ψb(z) =
∑M

i=1 yiαig(z, h
i
b), and fitting a piecewise-

linear approximation to the functions ψb : R → R, b =
1, . . . , B (for the intersection or l1 kernel this approxima-

tion can be exact).

Lampert et al. [13] propose branch-and-bound to accel-

erate inference by reducing the number N of regions vis-

ited, but demonstrate the algorithm for un-normalized his-

tograms and a linear SVM. In an attempt to bypass the

cascade and to use directly the quasi-linear or non-linear

models (as the linear model is suboptimal, see [7, 16] and

Sec. 3.2), we derived bounds to apply [13] to these cases

and hence obtained a reduction of the factor N comparable

to [13]. Unfortunately, we still found it necessary to visit

several thousand regions per image, which, combined with

the large histogram dimension, makes this approach inprac-

tical. This motivates the use of a cascade of classifiers.

3.3. Histogram normalization and bias

Histograms are used here as descriptors of the region ap-

pearance. In particular, the kernel K(hR, hR′

) is intended

as measure of similarity of the appearance of the regions

R and R′, and should attain a maximum when the two re-

gions have identical appearance, i.e. the requirement that

K(hR, hR) ≥ K(hR, hR′

) for all regionsR andR′. To find

a sufficient condition for this requirement, note that any PD

kernel K(hR, hR′

) can be turned into a square distance by

the formula d2(hR, hR′

) = K(hR, hR) + K(hR′

, hR′

) −
2K(hR, hR′

), and that 0 = d2(hR, hR) ≤ d2(hR, hR′

) by

the axioms of distance. Hence a sufficient condition, as can

be verified by substitution in the previous inequality, is that

K(h, h) = const. for all histograms h. For the linear ker-

nel, K(h, h) = ‖h‖2
2 and the condition is satisfied if the

histograms are l2 normalized. The linear SVMs with l1-

normalized or un-normalized histograms fail to meet this

condition but are extremely efficient to evaluate (Sect. 3.1).

The questions is, does this adversely affect the classifica-

tion?

Consider first l1-normalized histograms. The discrim-

inant score can be calculated and bounded as C(hR) =
∑

b wbh
R
b ≤ (maxb wb)

∑

b h
R
b = maxb wb because, by

hypothesis, ‖hR‖1 =
∑

b h
R
b = 1. In particular, the upper

bound is attained if the mass of hR is concentrated on the

bin bwith the largest weight wb. This happens, for instance,

if R is a small region that encloses just a single occurrence

of a feature of that label. The consequence is that smaller

regions are likely to have a larger score magnitude than than

larger regions.

Consider now using un-normalized histogramsHR and a
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Figure 2. Normalization and bias. A linear SVM is trained to

discriminate image regions R that do and do not portray a car

(for VOC 07 training and testing). The figure compares using un-

normalized, l1-normalized, and l2-normalized histograms. The

first three panels are scatter plots of the SVM score C(hR) (for

some positive and negative test regions) and the square root of the

region area. The un-normalized scores reward large regions, the

l1-normalized scores small regions, and the l2-normalized scores

are essentially unbiased. The last panel shows the ROC curve

for the three classifiers, illustrating that l2 normalization performs

best.

linear kernel as in [13]. In this case, the score of a region R

is given by C(HR) = 〈w, HR〉 = ‖HR‖1〈w,
HR

‖HR‖1

〉 and

is proportional to the mass (number of feature occurrences)

‖HR‖1, which is usually strongly correlated with the region

area. The consequence is that larger regions are likely to

have a larger score magnitude than than smaller regions.

Fig. 2 illustrates such considerations empirically. Unfor-

tunately, we are not aware of any method that could be used

to evaluate the l2-normalized SVM in O(N) operations.

Thus the fast linear SVM should be considered a weak clas-

sifier suitable for the first cascade stage only. Note that for

the quasi-linear and non-linear kernels normalization is not

a bottleneck and the proper one can be used (which, based

on the proposed criterion, is l1).

4. Features and implementation details

4.1. Appearance descriptors

The descriptors of the appearance of the candidate re-

gions R are constructed from a number of different feature

channels. These are the features used in [4, 13, 21, 25], and

are computed using open source code [22].

Bag of visual words. SIFT descriptors [15] are extracted at

Hessian-Laplace [18] points and quantized in a vocabulary

of 3000 words, trained on features from the bounding boxes

of several object instances. The vocabulary is then discrim-

inatively compressed down to 64 words for each class by

using [11].

Dense words (PhowGray, PhowColor) [3]. Rotationally

invariant SIFT descriptors are extracted on a regular grid

each five pixels, at four multiple scales (10, 15, 20, 25 pixel

radii), zeroing the low contrast ones. Descriptors are then

quantized in 300 visual words. The color versions stacks

SIFT descriptors for each HSV color channels.

Histogram of oriented edges (Phog180, Phog360) [7, 3].

The Canny edge detector is used to compute an edge map

and the underlying image gradient ∇I(p) is used to assign

an orientation and a weight to each edge pixel p. The orien-

tation angle is then quantized in eight bins with soft linear

assignment and an histogram is computed.

Self-similarity features (SSIM). Self-similarity descrip-

tors [20] are computed on a regular grid at steps of five

pixels. Each descriptor is obtained by computing the cor-

relation map of a 5 × 5 pixels patch in a window of radius

40 pixels, then quantizing it in 3 radial bins and 10 angu-

lar bins, obtaining 30 dimensional descriptor vectors. The

descriptors are then quantized into 300 visual words.

Spatial pyramid. For each feature channel a three-level

pyramid of spatial histograms hR
f0, h

R
f1, h

R
f2 is comptued,

similar to [6, 14].

4.2. Learning the object classifier

Each SVM classifierC(hR) is trained to discriminate be-

tween candidate regions R that do and do not contain an

instance of the object of interest, i.e. a one-vs-the-rest clas-

sifier.

Training (performed using the MKL algorithm

from [21]) requires providing a number of positive

and negative data samples. The ground truth object

instances for a class, plus a number of jittered instances

(obtained by flipping the training images), are used as

positive samples.

Regions that do not overlap the target object instances by

more than 20% are used as negative samples. The number

of possible negative regions is prohibitively large and a set

of representative cases must be identified. This is done by

retraining (bootstrapping) each classifier, as follows. The

classifier is used to extract candidate regions from a number

of training images. The candidates are then compared to the

ground truth, and are labeled as errors if they overlap the

target class by less than 20%. Finally, up to three highly

scored errors are extracted for each image, avoiding mutual

overlap of more than 50%. Such errors are then added to the

SVM training data as hard negative samples and the SVM
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 MKL 50.4%

avg 49.9%

ssim 39.1%

phog180 39.8%

phog360 40.9%

phowColor 42.6%

phowGray 44.4%

Figure 3. Training and testing on VOC 2007. The table reports the average precision obtained by our method in each of the 20 PASCAL

2007 challenge categories. The method has been trained and tested on the 2007 data. (st2) refers to stage 2 of the pipeline (non-linear

SVM) and (st1) to stage 1 (quasi-linear SVM). For comparison, (dt) reports the results from [10] and (v7) the best result for each category

among all methods submitted to the VOC 2007 challenge (see [9] for the breakdown). Our method outperforms the others in all but three

categories. With few exceptions, the non-linear SVM (st2) outperforms the quasi-linear SVM (st1). Below are the precision-recall curves

obtained for the two well performing classes and one difficult one. Last panel. The following discriminative models are compared for

the class car: MKL, avg (average of all channels), ssim (self-similarity), phog180, phog360, phowColor, phowGray. Combining features

yields a large improvement; averaging is close to MKL, but the latter yields a sparse selection of channels.

aerop. bicyc. bird boat bottle bus car cat chair cow dinin. dog horse motor. person potte. sheep sofa train tvmon.

st2 41.2 39.0 16.8 19.1 24.8 28.4 37.3 29.1 13.8 16.7 12.3 17.9 39.8 43.7 25.0 7.9 19.4 17.4 36.5 41.2

st1 40.6 34.1 13.6 13.7 17.4 28.6 33.3 21.4 12.1 15.1 15.1 15.0 37.9 39.5 24.0 10.2 18.6 15.1 35.4 39.3

v8 36.5 42.0 11.3 11.4 28.2 23.8 36.6 21.3 14.6 17.7 15.1 14.9 36.1 40.3 42.0 12.6 19.4 17.3 29.6 37.1

Figure 4. Training and testing on VOC 2008. (st2) non-linear classifier (st1) quasi-linear classifier (v8) best result for each category

among all methods submitted to the VOC 2008 challenge (see [9] for the breakdown).

aerop. bicyc. bird boat bottle bus car cat chair cow dinin. dog horse motor. person potte. sheep sofa train tvmon.

st2 38.3 41.3 15.5 14.6 17.6 45.4 49.8 25.6 15.2 23.6 7.7 18.4 40.7 43.8 21.3 10.6 19.4 18.6 42.3 45.1

st1 37.2 38.5 12.9 6.0 14.9 43.8 45.5 17.9 12.9 21.4 10.6 16.4 37.1 40.8 20.5 6.2 19.3 16.1 38.6 40.6

v8 28.5 39.0 10.7 11.2 20.2 41.0 48.4 15.2 16.1 25.7 10.1 11.5 34.9 39.7 16.8 10.3 21.8 22.8 37.0 36.3

Figure 5. Training on VOC 2008 and testing on VOC 2007. (st2) non-linear classifier (st1) quasi-linear classifier (v8) best result for each

category among all methods submitted to the VOC 2008 challenge (see [9] for the breakdown).

is trained again.

Since extracting candidates is a relatively slow operation,

retraining is operated on rotating subsets of training images

as follows. Training images are partitioned into two subsets,

making sure that each subset contains in roughly equal pro-

portions images with the target object (e.g. car), other easily

confused objects (e.g. bus), and other objects as well. The

model is then tested on each subset in turn, including new

hard negative and retraining each time. Experimentally, we

verified that it is beneficial to retrain twice on each subset.

Post-processing. The output of the last stage is a ranked

list of 100 candidate regions per image. Many of these re-

gions correspond to duplicate detections, which we remove

in post processing, by non-maxima suppression. This is im-

plemented as follows: The most highly ranked candidate is

selected, all other candidates with an overlap greater than

20% are removed and the process is repeated until at most

ten candidates are selected (as images typically do not con-

tain more than a few instances of an object).

5. Experiments

We evaluated our method on the VOC 2007 (Fig. 3)

and 2008 (Fig. 4 and 5) challenges, outperforming all other

methods in all but a few cases. Since the model is appear-

ance and shape based, it works well for categories which

are characterized by such properties (e.g. the vehicle classes

and some animal classes like horse). Performance is less

good for some wiry objects (e.g. potted plant) or objects



defined more by their function and context than by their ap-

pearance (e.g. chair, dining table).

Effect of combining features. The last panel of Fig. 3 illus-

trates the effect of combining feature channels on one class

(other classes are qualitatively similar). While combining

features is very beneficial, the gain obtained by MKL over

simple averaging is modest. However MKL determines a

sparse selection of features, which helps improving the ef-

ficiency of inference.

Simplifying the training data. We found it beneficial to

remove from the positive training data truncated objects

(based on the ground truth annotations). Our interpretation

is that training on partial detections makes learning more

ambiguous and difficult.

Testing times. On a standard 3GHz CPU the following test-

ing times per image were observed: below 1 second for the

jumping window stage, around 2–3 seconds for the linear

SVM stage (on 2 × 105 sliding windows), around 15 sec-

onds for the quasi-linear kernel stage (on 2 × 103 candi-

dates), around 50 seconds for the non linear kernel stage

(on 100 candidates). Running the last stage directly on the

sliding windows would require 27 hours per image (as op-

posed to roughly 67 seconds taken by our method).

6. Discussion

We have shown that a MKL classifier can be successfully

trained and tested, in a reasonable time, to act as a detector.

The performance exceeds in almost all cases the state of

the art on the PASCAL VOC benchmark. This answers the

questions raised in the introduction.

However, we chose a three stage cascade to overcome

the complexity cost, and this has resulted in quite a ‘heavy’

algorithm in both training and testing. We are currently in-

vestigating alternatives to the full cascade, for example us-

ing the candidates from the first stage as regions to search

around, rather than the only possibilities for further consid-

eration. In this way we hope to reduce the number of can-

didates required, and also the power required by the subse-

quent classifiers.
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