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Abstract

We investigate the problem of learning optimal descrip-
tors for a given classi�cation task. Many hand-crafted de-
scriptors have been proposed in the literature for measuring
visual similarity. Looking past initial differences, whatre-
ally distinguishes one descriptor from another is the trade-
off that it achieves between discriminative power and in-
variance. Since this trade-off must vary from task to task,
no single descriptor can be optimal in all situations.

Our focus, in this paper, is on learning the optimal trade-
off for classi�cation given a particular training set and
prior constraints. The problem is posed in the kernel learn-
ing framework. We learn the optimal, domain-speci�c ker-
nel as a combination of base kernels corresponding to base
features which achieve different levels of trade-off (suchas
no invariance, rotation invariance, scale invariance, af�ne
invariance,etc.) This leads to a convex optimisation prob-
lem with a unique global optimum which can be solved for
ef�ciently. The method is shown to achieve state-of-the-art
performance on the UIUC textures, Oxford �owers and Cal-
tech 101 datasets.

1. Introduction

A fundamental problem in visual classi�cation is design-
ing good descriptors and many successful ones have been
proposed in the literature [31]. If one looks past the ini-
tial dissimilarities, what really distinguishes one descrip-
tor from another is the trade-off that it achieves between
discriminative power and invariance. For instance, im-
age patches, when compared using standard Euclidean dis-
tance, have almost no invariance but very high discrimina-
tive power. At the other extreme, a constant descriptor has
complete invariance but no discriminative power. Most de-
scriptors place themselves somewhere along this spectrum
according to what they believe is the optimal trade-off.

However, the trade-off between invariance and discrim-
inative power depends on the speci�c classi�cation task at
hand. It varies according to the training data available as

well as prior knowledge and thus no single descriptor can
be optimal for all tasks. For example, when classifying dig-
its, one would not like to use a fully rotationally invariant
descriptor as a 6 would then be mistaken for a 9. If the task
was now simpli�ed to distinguishing between just 4 and 9,
then it would be preferable to have full rotational invari-
ance if the digits could occur at any arbitrary orientation.
However, 4s and 9s are easily confused. Therefore, if a rich
enough training corpus was available with digits present at
a large number of orientations, then one could revert back to
a more discriminative and less invariant descriptor. In this
scenario, the data itself would provide the rotation invari-
ance and even nearest neighbour matching of rotationally
variant descriptors would do well. As such, even if an op-
timal descriptor could be hand-crafted for a given task, it
might no longer be optimal as the training set size is varied.

Our focus in this paper is on learning the trade-off be-
tween invariance and discriminative power for a given clas-
si�cation task. Knowledge of the trade-off can directly lead
to improved classi�cation. Perhaps as importantly, it might
also provide insights into the nature of the problem being
tackled. In addition, knowing how invariances change with
varying training set size could be used to learn priors which
could be transfered to other closely related problems. Fi-
nally, such knowledge can also be used to perform analo-
gous reasoning where images are retrieved on the basis of
learnt invariances rather than just image content.

It is often easy to arrive at the broad level of invariance
or discriminative power necessary for a particular classi�-
cation task by visual inspection. However, �guring out the
exact trade-off can be more dif�cult. Let us go back to our
example of classifying 4 versus 9. If only rotated copies of
both digits were present in the training set then we could
conclude that, broadly speaking, rotationally invariant de-
scriptors would be suited to this task. However, what if
some of the rotated digits were now scaled by a small fac-
tor, just enough to start causing confusion between the two
digits? We might now consider moving up to similarity
or af�ne invariant descriptors. However, this might lead to
even poorer classi�cation performance as such descriptors
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would have lower discriminative power than purely rota-
tionally invariant ones.

An ideal solution would be for every descriptor to have
a continuously tunable meta parameter controlling its level
of invariance. By varying the parameter, one could gener-
ate an in�nite set of base descriptors spanning the complete
range of the trade-off and, from this set, select the single
base descriptor corresponding to the optimal trade-off level.
The optimal descriptor's kernel matrix should have the same
structure as theideal kernel(essentially corresponding to
zero intra-class and in�nite inter-class distances) in kernel
target alignment [15]. Unfortunately, most descriptors don't
have such a continuously tunable parameter.

It is nevertheless possible to discretely sample the levels
of invariance and generate a �nite set of base descriptors.
For instance, by selectively taking the maximum response
over scale or orientation or other transformations of a ba-
sic �lter one can generate base descriptors that are scale in-
variant, rotation invariant,etc. Alternatively, one can even
start with different descriptors which achieve different lev-
els of the trade-off. The optimal descriptor can still be ap-
proximated, not by selecting one of the base descriptors, but
rather by taking their combination. However, approximat-
ing the ideal kernel via kernel target alignment is no longer
appropriate as the method is not geared for classi�cation.

Our solution instead is to combine a minimal set of base
descriptors speci�cally for classi�cation. The theory is de-
veloped in Section3 but for an intuitive explanation let us
return to our 4 versus 9 example. Starting with base descrip-
tors that are rotationally invariant, scale invariant, af�ne in-
variantetc., our solution is to approximate the optimal de-
scriptor by combining the rotationally invariant descriptor
with just the scale invariant one. The combined descriptor
would have neither invariance in full. As a result, the dis-
tance between a digit and its rotated copy would no longer
be zero, but would still be tolerably small. Similarly, small
scale changes would lead to increased, small non-zero dis-
tances within class. However, the combined distance be-
tween classes would also be increased and by a suf�cient
enough margin to ensure good classi�cation.

2. Related Work

Our work builds on recent advances in kernel learning.
It is also related to work on learning distance functions as
well as descriptor optimisation and combination.

The goal of kernel learning is to learn a kernel which
is optimal for the speci�ed task. Much progress has been
made recently in this �eld and solutions have been proposed
based on kernel target alignment [15], multiple kernel learn-
ing [3, 24, 35, 42, 52], hyperkernels [34, 45], boosted ker-
nels [14, 20] and other methods [2, 9]. These approaches
mainly differ in the cost function that is optimised. Of par-
ticular interest are [3, 4, 35, 42] as each learns the optimal

kernel for classi�cation as a linear combination of base ker-
nels with positive weights while enforcing sparsity.

The body of work on learning distances [13,17,30,32,37,
39,41] is also relevant to our problem. In addition, boosting
has been particularly successful at learning distances and
features optimised for classi�cation and related tasks [44].
A recent survey of the state-of-the-art in learning distances
can be found in [19].

There has also been a lot of work done on learning in-
variances in an unsupervised setting, see [22, 43, 49] and
references within. In this scenario, an object is allowed to
transform over time and a representation invariant to such
transformations is learnt from the data. These methods are
not directly applicable to our problem as they are unsuper-
vised and generally focus on learning invariances without
regard to discriminative power.

One might also try and learn an optimal descriptor di-
rectly [21, 27, 36, 48] for classi�cation. However, our pro-
posed solution has two advantages. First, by combining ker-
nels, we never need to work in combined high dimensional
descriptor space with all its associated problems. By effec-
tive regularisation, we are also able to avoid the over-�tting
problem typical of such high dimensional spaces. Second,
we are able to combine heterogeneous sources of data, such
as shape, colour and texture.

The idea of combining descriptors has been explored
in [8,25,33,51]. Unfortunately, these methods are not based
on learning. In [25, 51] a �xed combination of descriptors
is tried with all descriptors being equally weighted all the
time. In [8, 33] a brute force search is performed over a
validation set to determine the best descriptor weights.

Finally, the idea of a trade-off between invariance and
discriminative power is well known and is explored theo-
retically in [40]. However, rather than learning the actual
trade-off, their proposed randomised invariants solutionis
to add noise to the training set features. The noise parame-
ters, corresponding to the trade-off, have to be hand tuned.
In this paper, we automatically learn both the trade-off as
well as the optimal kernel for classi�cation.

3. Learning the Trade-Off

We start withNk base descriptors and associated dis-
tance functionsf 1; : : : ; f N k . Each descriptor achieves a dif-
ferent trade-off between discriminative power and invari-
ance on the speci�ed task. The descriptors and distance
functions are then “kernelised” to yield base kernels matri-
cesK 1; : : : ; K N k . There are many ways of converting dis-
tances to inner products and one is free to choose whichever
embedding is most suitable. We simply setK k (x ; y ) =
exp(�  k f k (x ; y )) taking care to ensure that the kernel ma-
trices are strictly positive de�nite.

Given the base kernels, the optimal descriptor's kernel is
approximated asK opt =

P
k dk K k where the weightsd



correspond to the trade-off level. The optimisation is car-
ried out in an SVM framework so as to achieve the best
classi�cation on the training set, subject to regularisation.
We set up the following primal cost function

Min
w ;d ;�

1
2 w t w + C1t � + � t d (1)

subject to yi (w t � (x i ) + b) � 1 � � i (2)

� � 0; d � 0; Ad � p (3)

where � t (x i )� (x j ) =
P

k dk � t
k (x i )� k (x j ) (4)

The objective function (1) is near identical to the stan-
dard l1 C-SVM objective. Given the misclassi�cation
penaltyC, it maximises the margin while minimising the
hinge loss on the training setf (x i ; yi )g. The only addition
is anl1 regularisation on the weightsd since we would like
to discover a minimal set of invariances. Thus, most of the
weights will be set to zero depending on the parameters�
which encode our prior preferences for descriptors. Thel1
regularisation thus prevents over�tting if many base kernels
are included since only a few will end up being used. Also,
it can be shown that the quantity12 w t w is minimised by
increasing the weights and letting the support vectors tend
to zero. The regularisation prevents this from happening
and can therefore be seen as not letting the weights become
too large. This could also be achieved by requiring that the
weights sum to unity but we prefer not to do this as it re-
stricts the search space.

The constraints are also similar to the standard SVM
formulation. Two additional constraints have been incor-
porated. The �rst,d � 0, ensures that the weights are
interpretable and also leads to a much more ef�cient op-
timisation problem. The second,Ad � p, with some
restrictions, lets us encode our prior knowledge about the
problem. The �nal condition (4) is just a restatement of
K opt =

P
k dk K k using the non-linear embedding� .

It is straightforward to derive the corresponding dual
problem which turns out to be:

Max
� ;�

1t � + p t � (5)

subject to 0 � � ; 0 � � � C; 1t Y � = 0 (6)
1
2 � t YK k Y � � � k � � t A k (7)

where the non-zero� s correspond to the support vectors,
Y is a diagonal matrix with the labels on the diagonal and
A k is thekth column ofA .

The dual is convex with a unique global optimum. It is an
instance of a Second Order Cone Program [10] and can be
solved relatively ef�ciently by off-the-shelf numerical opti-
misation packages such as SeDuMi [1].

However, in order to tackle large scale problems involv-
ing hundreds of kernels we adopt the minimax optimisation

strategy of [12,35]. In their method, the primal is reformu-
lated as Mind T(d) subject tod � 0 andAd � p, where

T(d) = Minw ;�
1
2 w t w + C1t � + � t d (8)

subject to yi (w t � (x i ) + b) � 1 � � i (9)

� � 0 (10)

The strategy is to minimiseT using projected gradient
descent via the iterationdn +1 = dn � � n r T taking care
to ensure that the constraintsdn +1 � 0 andAd n +1 � p
are satis�ed. The important step then is calculatingr T. In
order to do so, we look to the dual ofT which is

W (d) = Max
�

1t � + � t d � 1
2

P
k dk � t YK k Y � (11)

subject to 0 � � � C; 1t Y � = 0 (12)

By the principle of strong dualityT(d) = W (d). Fur-
thermore, if� � maximisesW , then [7] have shown thatW
is differentiable if� � is unique (which it is in our case since
all the kernel matrices are strictly positive de�nite). Finally,
as proved in Lemma 2 of [12],W can be differentiated with
respect tod as if � � did not depend ond. We therefore get

@T
@dk

=
@W
@dk

= � k � 1
2 � � t YK k Y � � (13)

The minimax algorithm proceeds in two stages. In the
�rst, d and thereforeK =

P
dk K k are �xed. Since� t d is

a constant,W is the standard SVM dual with kernel matrix
K . Any large scale SVM solver of choice can therefore be
used to maximiseW and obtain� � . In the second stage,
T is minimised by projected gradient descent according to
(13). The two stages are repeated until convergence [11] or
a maximum number of iterations is reached at which point
the weightsd and support vectors� � have been solved for.

A novel pointx can now be classi�ed as� 1 by determin-
ing sign(

P
i � i yi K opt (x ; x i ) + b). To handle multi-class

problems, both 1-vs-1 and 1-vs-All formulations are tried.
For 1-vs-1, the task is divided into pairwise binary classi�-
cation problems and a novel point is classi�ed by taking the
majority vote over classi�ers. For 1-vs-All, one classi�eris
learnt per class and a novel point is classi�ed according to
its maximal distance from the separating hyperplanes.

4. Experimentation

In this section, we apply our method to the UIUC tex-
tures [25], Oxford �owers [33] and Caltech 101 object cat-
egorisation [16] databases. Since we would like to test how
general the technique is, we assume that no prior knowledge
is available and that no descriptor isa priori preferable to
any other. We therefore set� k to be constant for allk and do
not make use of the constraintsAd � p (unless otherwise
stated). The only parameters left to be set areC, the mis-
classi�cation penalty, and the kernel parameters k . These



parameters are not tweaked. Instead,C is set to 1000 for all
classi�ers and databases and k is set as in [51].

To present comparative results, we tried the Multiple
Kernel Learning SDP formulation of [24]. However, as [24]
does not enforce sparsity and the results were5% worse on
the Caltech database we didn't explore the method further.
Instead, we compare our method to the Multiple Kernel
Learning Blockl1 regularisation method of [4] for which
code is publicly available. All experimental results are cal-
culated over 20 random train/test splits of the data except
for 1-vs-All results which are calculated over 3 splits.

4.1. UIUC textures

The UIUC texture database [25] has 25 classes and 40
images per class. The database contains materials imaged
under signi�cant viewpoint variations and also contains fab-
rics which display folds and have non-rigid surface defor-
mations. A priori, it is hard to tell what is the right level
of invariance for this database. Af�ne invariance is proba-
bly helpful given the signi�cant viewpoint changes. Higher
levels of invariance might also be needed to characterise
fabrics and handle non-af�ne deformations. However, [51]
concluded that similarity invariance is better than either
scale or af�ne invariance for this database. Then again,
our results indicate that even better performance can be ob-
tained by sticking to rotationally invariant descriptors.This
reinforces the observation that it is not always straight for-
ward to pinpoint the required level of invariance.

For this database, we start with a standard patch descrip-
tor having no invariance but then take different transforms
to derive 7 other base descriptors achieving different lev-
els of the trade-off. The �rst descriptor is obtained by lin-
early projecting the patch onto the MR �lters [47] (see Fig-
ure 1). Subsequent rotation, scale and similarity invariant
descriptors are obtained by taking the maximum response
of a basic �lter over orientation, scale or both. This is sim-
ilar to [38] where the maximum response is taken over po-
sition to achieve translation invariance. MR �lter responses
can also be used to derive fractal based bi-Lipschitz (includ-
ing af�ne, perspective and non-rigid surface deformations)
invariant and rotation invariant descriptors [46]. Finally,
patches can directly yield rotation invariant descriptorsby
aligning them according to their dominant orientation.

Figure 1. The extended MR8 �lter bank.

Invariance 1NN SVM (1-vs-1)
None (Patch) 82:39� 1:58% 91:46� 1:13%
None (MR) 82:18� 1:51% 91:16� 1:05%
Rotation (Patch) 97:83� 0:63% 98:18� 0:43%
Rotation (MR) 93:00� 1:04% 96:69� 0:74%
Rotation (Fractal) 94:96� 0:91% 97:24� 0:76%
Scale (MR) 76:77� 1:77% 87:04� 1:57%
Similarity (MR) 90:35� 1:15% 95:12� 0:95%
Bi-Lipschitz (Fractal) 95:40� 0:92% 97:19� 0:52%

Table 1. Classi�cation results on the UIUC texture dataset. The
MKL-Block l1 method of [4] achieves96:94 � 0:91% for 1-vs-1
classi�cation when combining all the descriptors. Our results are
98.76� 0.64% (1-vs-1) and98.9� 0.68% (1-vs-All).

For classi�cation, the testing methodology is kept the
same as in [51] – 20 images per class are used for training
and the other 20 for testing. Table1 lists the classi�cation
results. Our results are comparable to the98:70 � 0:4%
achieved by the state-of-the-art [51]. What is interesting
is that our performance has not decreased below that of
any single descriptor despite the inclusion of specialisedde-
scriptors having scale and no invariance. These descriptors
have poor performance in general. However, our method
automatically sets their weights to zero most of the time
and uses them only when they are bene�cial for classi�ca-
tion. Had the equally weighted combination scheme of [51]
been used, these descriptors would have been brought into
play all the time and the resulting accuracy drops down
to 96:79 � 0:86%. In each of the 20 train/test splits,

Class 23 Class 3 Class 7 Class 4
Figure 2. 1-vs-1 weights learnt on the UIUC database: Both
class 23 and class 3 exhibit signi�cant variation. As a result, bi-
Lipschitz invariance gets a very high weight when distinguishing
between these two classes while all the other weights are 0. How-
ever class 7 is simpler and the main source of variability is rota-
tion. Thus, full bi-Lipschitz invariance is no longer needed when
distinguishing between class 23 and class 7. It can therefore be
traded-off with a more discriminative descriptor. This is re�ected
in the learnt weights where rotation invariance gets a high weight
of 1.46 while bi-Lipschitz invariance gets a small weight of 0.22.
Bi-Lipschitz invariance isn't set to 0 as class 23 would start get-
ting misclassi�ed. However, if class 23 were replaced with the
simpler class 4, which primarily has rotations, then bi-Lipschitz
invariance is no longer necessary. Thus, when distinguishing class
7 from class 4, rotation invariance is the only feature used.
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Figure 3. Column (a) shows images from classes 10 and 25 and
the variation in learnt weights as the training set size is increased
for this pairwise classi�cation task. A similar plot for classes 8
and 15 is shown in (b). When the training set size is small, a
higher level of invariance (bi-Lipschitz) is needed. As the training
set size grows, a less invariant and more discriminative descriptor
(similarity) is preferred and automatically learnt by our method.
The trends, though not identical, are similar in both (a) and (b)
indicating that the tasks could be related. Inspecting the two class
pairs indicates that while they are visually distinct, they do share
the same types of variations (apart from the fabric crumpling).

learning the descriptors using our method outperformed
equally weighted combinations (as well as the MKL-Block
l1 method). Figure2 shows how the learnt weights cor-
respond visually to the trade-offs between different classes
while Figure3 shows that the learnt weights change sensi-
bly as the training set size is varied.

4.2. Oxford Flowers

The Oxford �owers database [33] contains 17 different
categories of �owers and each class has 80 images. Classi-
�cation is carried out on the basis of vocabularies of visual
words of shape, colour and texture descriptors in [33]. The
background in each image is removed using graph cuts so
as to extract features from the �owers alone and not from
the surrounding vegetation. Shape distances between two
images are calculated as the� 2 statistic between the nor-
malised frequency histograms of densely sampled, vector
quantised SIFT descriptors [29] of the two images. Sim-
ilarly, colour distances are computed over vocabularies of
HSV descriptors and texture over MR8 �lter responses [47].

Cue combination �ts well within our framework as one
can think of an ideal colour descriptor as being very highly
discriminating on the basis of an object's colour but invari-
ant to changes in the object's shape or texture. Similar argu-
ments hold for shape and texture descriptors. We therefore

Descriptor 1NN SVM (1-vs-1)
Shape 53:30� 2:69% 68:88� 2:04%
Colour 47:32� 2:59% 59:71� 1:95%
Texture 39:36� 2:43% 59:00� 2:14%

Table 2. Classi�cation results on the Oxford �owers dataset. The
MKL-Block l1 method of [4] achieves77:84 � 2:13% for 1-vs-1
classi�cation when combining all the descriptors. Our results are
80.49� 1.97% (1-vs-1) and82.55� 0.34% (1-vs-All).

start with shape, colour and texture distances between every
image pair, provided directly by the authors of [33]. Test-
ing is also carried out according to the methodology of [33].
Thus, for each class, 40 images are used for training, 20 for
validation and 20 for testing. We make no use of the valida-
tion set as all our parameters have already been set. Table2
lists the classi�cation results. Our results are better than the
individual base kernels and are also better than the MKL-
Block l1 formulation on each of the 20 train/test splits.

Figure4 (a) plots the distribution of the learnt shape and
colour weights for all 136 pairwise classi�ers in the 1-vs-
1 formulation. Normalised texture weights are shown as
colour codes to emphasise that they are relatively small.
Note that the weights don't favour either just shape or just
colour features. An entire set of weights is learnt, span-
ning the full range from shape to colour. While a person
could correctly predict which is the more important feature
by looking at the images, they would be hard pressed to
achieve the precise trade-off.

The relative importance of the learnt 1-vs-1 weights
is curious. Shape turns out to be the dominant feature
in 38.24% of the pairwise classi�cation tasks, colour in
60.29% and texture in 1.47%. This is surprising, since ac-
cording to the individual SVM classi�cation results in Ta-
ble2, shape is the best single feature and texture is nearly as
good as colour. Texture features are probably ignored in our
formulation as they are very strongly correlated with shape
features (both are edge based). Thel1 regularisation prefers
minimal feature sets with small weights and so gives tex-
ture either zero or low weights. Forcing the texture weights
to be high (by constraining them to be higher than colour
using the constraint termAd � p) improves the overall
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Figure 4. The distribution of the learnt shape and colour weights
on the Oxford �owers dataset: (a) 1-vs-1 pairwise weights for all
the classes; (b) 1-vs-1 weights for Sun�owers and Daisies; and (c)
Bluebells and Crocuses.
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Figure 5. 1-vs-1 weights learnt on the Oxford dataset: Dande-
lions and Wild Tulips are both yellow and therefore colour is a
nuisance parameter to which we should be invariant. However,
shape is a good discriminator for these �owers. This is re�ected
in the weights which are learnt to be shape=3.94, colour=0 and
texture=0. When the task changes to distinguishing Dandelions
from Crocuses, shape becomes a poor discriminator (Crocuses
have large variability) but colour becomes good. However, Cro-
cuses also have some yellow which causes confusion. To compen-
sate for this, shape invariance is traded-off for increased discrimi-
nation and the learnt weights are shape=0.42, colour=2.46 and tex-
ture=0. When distinguishing Cowslips from Irises, all three fea-
tures are used and the weights are shape=1.48, colour=2.00 and
texture=1.36. As can be seen, colour is good at characterising
Cowslips (which are always yellow) but not suf�cient for distin-
guishing them from Irises which might also be yellow. Shape and
texture features are also not suf�cient by themselves due to the
large intra-class variability. However, combining all three features
in the right proportion leads to good discrimination.

1-vs-1 accuracy marginally to81:12� 2:09%.
A few classes along with their learnt pairwise weights are

shown in Figure5. Keeping one class �xed and varying the
other results in the weights changing according to changes
in perceptual cues. Since the learnt weights provide a layer
of abstraction, one can use them to reason about the given
classi�cation problem. For instance, Figure4 (b) and (c)
plot the distribution of all 1-vs-1 weights for Bluebells and
Crocuses and Sun�owers and Daisies respectively. The dis-
tributions of Bluebells and Crocuses are similar as are that
of Sun�owers and Daisies but the two sets are distinct from
each other. This shows that these categories form related

Bluebells (top) & Crocuses Sun�owers (top) & Daisies
Figure 6. Learning related tasks: Bluebells and Crocuses share
similar sets of invariances. Apart from some cases, they require
higher degrees of shape invariance and can be distinguished well
on the basis of their colour. Sun�owers and Daisies are neither
distinctive in shape nor in colour from all the other classes. They
form another related pair in that sense. Since the �owers in each
related pair are visually different, it might be hard to establish such
relationships by visual inspection alone.

classi�cation tasks (see Figure6). Such knowledge could
be useful for learning and transferring priors.

Finally, since only three descriptors are used on this data-
base, an exhaustive search can be performed on a validation
set for the best combination of weights. However, it was no-
ticed that performing a brute force search over every class
pair lead to over�tting. If ties were not resolved properly,
the overall classi�cation performance could be as poor as
60%. We therfore enforced that, in the 1-vs-1 formulation,
all pairwise classi�ers should have the same weights and
performed a brute force search again. The best weights re-
sulted in an accuracy of80:62 � 1:65%which is similar to
our results. A 1-vs-All brute force search couldn't be per-
formed as it was computationally too expensive.

4.3. Caltech 101 Object Categorisation

The Caltech 101 database [16] contains images of 101
categories of objects as well as a background class. The
database is very challenging as it contains classes with sig-
ni�cant shape and appearance variations (Ant, Chair) as
well as classes with roughly �xed shape but considerably
varying appearance (Butter�y, Watch) or vice-versa (Leop-
ard, Panda). We therefore combine 6 shape and appearance
features for this dataset.

The �rst two shape descriptors correspond to equations
(1) and (2) in [50] and are based on Geometric Blur [5].
Pairwise image distances for these were provided directly
by the authors for the training and test images used in their
paper. For the �rst descriptor, GB, the distance between
two images isf GB(I 1; I 2) = D A (I 1 ! I 2) + D A (I 2 !
I 1) whereD A (I 1 ! I 2) = (1 =m)

P m
i =1 minj =1 ::n kF 1

i �
F 2

j k. F 1
i and F 2

j are Geometric Blur features in the two
images. The texture term in (1) in [50] is not used. The
second descriptor, GBDist, corresponding to (2) in [50]. It
is very similar to GB except thatD A now incorporates an
additional �rst-order geometric distortion term.

We also incorporate the four descriptors used in [8].
The two appearance features, AppGray and AppColour, are
based on SIFT descriptors sampled on a regular grid. At
each point on the grid, SIFT descriptors are computed us-

Descriptor 1NN SVM (1-vs-1)
GB 39:67� 1:02% 57:33� 0:94%
GBDist 45:23� 0:96% 59:30� 1:00%
AppGray 42:08� 0:81% 52:83� 1:00%
AppColour 32:79� 0:92% 40:84� 0:78%
Shape180 32:01� 0:89% 48:83� 0:78%
Shape360 31:17� 0:98% 50:63� 0:88%

Table 3. Classi�cation results on the Caltech 101 dataset. The
MKL-Block l1 method of [4] achieves76:55 � 0:84% for 1-vs-
1 classi�cation when combining all the descriptors. Our results
are78.43� 1.05% (1-vs-1) and87.82� 1.00% (1-vs-All).
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Figure 7. In (a) the three classes, Pizza, Soccer ball and Watch, all
consist of round objects and so the learnt weights do not use shape
for any of these class pairs. In (b) both Butter�y and Electric guitar
have signi�cant within class appearance variation. However, their
shape remains much the same within class and is distinct between
the classes. As such, only shape is used to distinguish these two
classes from each other.

ing 4 �xed scales. These are then vector quantised to form a
vocabulary of visual words. Images are represented as a bag
of words and similarity between two images is given by the
spatial pyramid kernel [26]. While AppGray is computed
from gray scale images, AppColour is computed from an
HSV representation. The two shape features, Shape180 and
Shape360, are represented as histograms of oriented gradi-
ents and matched using the spatial pyramid kernel. Gradi-
ents are computed using the Canny edge detector followed
by Sobel �ltering. They are then discretized into the orienta-
tion histogram bins with soft voting. The primary difference
between the two descriptors is that Shape180 is discretized
into bins in the range[0; 180] and Shape360 into[0; 360].
Details can be found in [8]. Note that since the gradients
are computed at both boundary and texture edges these de-
scriptors represent both local shape and local texture.

To evaluate classi�cation performance, we stick to the
methodology adopted in [6, 50]. Thus, 15 images are ran-
domly selected from all 102 class (i.e. including the back-
ground) for training and another random 15 for testing.
Classi�cation results using each of the base descriptors as
well as their combination are given in Table3 and Figure7
gives a qualitative feel of the learnt weights.

To compare our results to the state-of-the-art, note
that [50] combine shape and texture features to obtain
59:08 � 0:37% and [18] combine colour features in addi-
tion to get60:3 � 0:70%. Kernel target alignment is used
by [28] to combine 8 kernels based on shape, colour tex-
ture and other cues. Their results are 59.80%. In [23], a
performance of57:83% is achieved by combining 12 ker-
nels using the MKL-Blockl1 method. In [8], a brute force
search is performed over a validation set to learn the best
combination of their 4 kernels in a 1-vs-All formulation.
When training and testing on 15 images for 101 categories
(i.e. excluding background) they record an overall classi�-
cation accuracy of71:4 � 0:8%. Using the same 4 kernels
but testing on all 102 categories we obtain79:85� 0:04%.

5. Conclusions

In this paper, we developed an approach for learning the
discriminative power-invariance trade-off for classi�cation.

Starting with base descriptors which achieve different levels
of the trade-off, our solution is to combine them optimally
in a kernel learning framework. The learnt kernel yields
superior classi�cation results while the learnt weights cor-
respond to the trade-off and can be used for meta level tasks
such as transfer learning or reasoning about the problem.

Our framework has certain attractive properties. It ap-
pears to be general and capable of handling diverse classi-
�cation problems. No hand tuning of parameters was re-
quired. In addition, it can be used to combine heteroge-
neous sources of data. This is particularly relevant in cases
where human intuition about the right levels of invariance
might fail – such as when combining audio, video and text.
Another advantage is that the method can work with poor,
or highly specialised, descriptors. This is again useful in
cases when the right levels of invariance are not knowna
priori and we would like to start with many base descrip-
tors. Also, it appears that we get similar (Oxford Flowers)
or better (Caltech 101) results as compared to brute force
search over a validation set. This is particularly encour-
aging since a brute force search can be computationally ex-
pensive. In addition, in the very small training set size limit,
it might not be feasible to hold out training data to form a
validation set and one also risks over�tting. Finally, our per-
formance was generally better than that of the MKL-Block
l1 method while also enjoying the advantage of scaling up
to large problems as long as ef�cient solvers for the corre-
sponding single kernel problem are available.
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