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Abstract. We investigate texture classification from single images obtained under
unknown viewpoint and illumination. A statistical approach is developed where
textures are modelled by the joint probability distribution of filter responses. This
distribution is represented by the frequency histogram of filter response cluster
centres (textons). Recognition proceeds from single, uncalibrated images and the
novelty here is that rotationally invariant filters are used and the filter response
space is low dimensional.

Classification performance is compared with the filter banks and methods of
Leung and Malik [IJCV 2001], Schmid [CVPR 2001] and Cula and Dana [IJCV 2004]
and it is demonstrated that superior performance is achieved here. Classification
results are presented for all 61 materials in the Columbia-Utrecht texture database.

We also discuss the effects of various parameters on our classification algorithm –
such as the choice of filter bank and rotational invariance, the size of the texton dic-
tionary as well as the number of training images used. Finally, we present a method
of reliably measuring relative orientation co-occurrence statistics in a rotationally
invariant manner, and discuss whether incorporating such information can enhance
the classifier’s performance.

Keywords: material classification, 3D textures, textons, filter banks, rotation in-
variance

1. Introduction

In this paper, we investigate the problem of classifying materials from
their imaged appearance, without imposing any constraints on, or re-
quiring any a priori knowledge of, the viewing or illumination con-
ditions under which these images were obtained. Classifying textures
from single images under such general conditions is a very demanding
task.

A texture image is primarily a function of the following variables:
the texture surface, its albedo, the illumination, the camera and its
viewing position. Even if we were to keep the first two parameters
fixed, i.e. photograph exactly the same patch of texture every time,
minor changes in the other parameters can lead to dramatic changes in
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Figure 1. The change in imaged appearance of the same texture (Plaster B, texture
# 30 from the Columbia-Utrecht database) with variation in imaging conditions.
Top row: constant viewing angle and varying illumination. Bottom row: constant
illumination and varying viewing angle. There is a considerable difference in the
appearance across images.

the resultant image (see figure 1). This causes a large variability in the
imaged appearance of a texture and dealing with it successfully is one
of the main tasks of any classification algorithm. Another factor which
comes into play is that, quite often, two textures when photographed
under very different imaging conditions can appear to be quite similar,
as is illustrated by figure 2. It is a combination of both these factors
which makes the texture classification problem so hard.

A statistical learning approach to the problem is developed and in-
vestigated in this paper. Textures are modelled by the joint distribution
of filter responses. This distribution is represented by texton (cluster
centre) frequencies, and textons and texture models are learnt from
training images. Classification of a novel image proceeds by mapping
the image to a texton distribution and comparing this distribution to
the learnt models. As such, this procedure is quite standard (Leung and
Malik, 2001), but the originality comes in at two points: first, texton

Figure 2. Small inter class variations between textures can make the problem harder
still. In the top row, the first and the fourth image are of the same texture while
all the other images, even though they look similar, belong to different classes.
Similarly, in the bottom row, the images appear similar and yet there are three
different texture classes present.
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clustering is in a very low dimensional space and is also rotationally
invariant. The second innovation is to classify textures from single
images while representing each texture class by a small set of models.

Our approach is most closely related to those of Leung and Ma-
lik (Leung and Malik, 2001), Schmid (Schmid, 2001) and Cula and
Dana (Cula and Dana, 2004). Leung and Malik’s method is not ro-
tationally invariant and requires as input a set of registered images
acquired under a (implicitly) known set of imaging conditions. Schmid’s
approach is rotationally invariant but the invariance is achieved in a dif-
ferent manner to ours, and texton clustering is in a higher dimensional
space. Cula and Dana classify from single images, but the method is
not rotationally invariant and their algorithm for model selection differs
from the one developed in this paper. These points are discussed in
more detail subsequently.

The paper is organised as follows: in section 2, the basic classifica-
tion algorithm is developed within a rotationally invariant framework.
The clustering, learning and classification steps of the algorithm are
described, and the performance of four filter sets is compared. The sets
include those used by Schmid (Schmid, 2001), Leung and Malik (Leung
and Malik, 2001), and two rotationally invariant sets based on maximal
filter responses. In section 3, methods are developed which minimise
the number of models used to characterise the various texture classes.
Section 4 then deals with various modifications and generalisations of
the basic algorithm. In particular, the effect of the choice of texton
dictionary and training images upon the classifier is investigated. Fi-
nally, the issue of whether information is lost by using only the first
order statistics of rotationally invariant filter responses is discussed. A
method for reliably measuring the relative orientation co-occurrence of
textons is presented in order to incorporate second order statistics into
the classification scheme.

All experiments are carried out on the Columbia-Utrecht (CUReT)
database (Dana et al., 1999), the same database used by (Cula and
Dana, 2004; Leung and Malik, 2001). It is demonstrated that the clas-
sifier developed here achieves performance superior to that of (Cula
and Dana, 2004) and (Leung and Malik, 2001), while requiring only
a single image as input and with no information (implicit or explicit)
about the illumination and viewing conditions. The CUReT database
contains 61 textures, and each texture has 205 images obtained under
different viewing and illumination conditions. The variety of textures
in this database is shown in figure 3. Results are reported for all 61
textures. A preliminary version of these results appeared in (Varma
and Zisserman, 2002).
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Figure 3. Textures from the Columbia-Utrecht database. All images are converted to
monochrome in this work, so colour is not used in discriminating different textures.

1.1. Background

Most of the early work on material classification tended to view texture
as albedo variation on a flat surface – thereby ignoring all surface
normal effects which play a major role when imaging conditions vary.
Recently, however, focus has been placed on these surface normal, or
3D, effects. Chantler et al. (Chantler et al., 2002a; Chantler et al.,
2000; Chantler et al., 2002b) and Penirschke et al. (Penirschke et al.,
2002) have studied the effect of change in illumination on textures and
have developed photometric stereo based classification algorithms.

Dana et al. (Dana et al., 1999), realising the need for a large texture
database which captured the variation of imaged appearances with
change in viewpoint and illumination, created the Columbia-Utrecht
(CUReT) database. Dana and Nayar (Dana and Nayar, 1998; Dana and
Nayar, 1999) developed parametric models based on surface roughness
and correlation lengths which were tested on sample textures from the
CUReT database. However, no significant classification results were
presented.
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Leung and Malik (Leung and Malik, 2001) were amongst the first
to seriously tackle the problem of classifying textures under varying
viewpoint and illumination. In particular, they made an important
innovation by giving an operational definition of a texton. They defined
a 2D texton as a cluster centre in filter response space. This not only
enabled textons to be generated automatically from an image, but also
opened up the possibility of a universal set of textons for all images. To
compensate for 3D effects, they proposed 3D textons which were cluster
centres of filter responses over a stack of images with representative
viewpoints and lighting. In the learning stage of their classification
algorithm, 20 images of each texture were geometrically registered and
mapped to a 48 dimensional filter response space. The registration was
necessary because the clustering that defined the texton was in the
stacked 20 × 48 = 960 dimensional space (i.e. the textons were 960-
vectors), and it was important that each filter be applied at the same
texture surface point as camera pose and illumination varied. In the
classification stage, 20 novel images of the same texture were presented.
However, these images also had to be registered and more significantly
had to have the same order as the original 20 (i.e. they had to be taken
from images with similar viewpoint and illumination to the original).
In essence, the viewpoint and lighting were being supplied implicitly by
this ordering. Leung and Malik also developed an MCMC algorithm for
classifying a single image under known imaging conditions. However,
the classification accuracy of this method was not as good as that
achieved by the multiple image method.

Cula and Dana (Cula and Dana, 2004) presented an algorithm based
on Leung and Malik’s framework but capable of classifying single im-
ages without requiring any a priori information. Using much the same
filter bank as Leung and Malik, they showed how to achieve results
comparable to (Leung and Malik, 2001) but using 2D textons generated
from single images instead of registered image stacks. We compare the
performance of our algorithm with theirs in section 3.

Suen and Healy (Suen and Healey, 2000) used correlation functions
across multiple colour bands to determine basis textures for each tex-
ture class. They assumed that, for every texture image picked from a
given class, the correlation function for that image could be represented
as a linear combination of the basis texture correlation functions of
that class. A nearest neighbour classifier employing the sum of squared
differences metric was used. The number of basis images for a particular
texture class also provided information about the dimensionality of that
class. The main drawback of their algorithm was its heavy reliance
on colour rather than purely on texture. While colour provides a very
strong cue for discrimination, it can also be misleading due to the colour
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constancy problem (Funt et al., 1998). The classifier developed in this
paper does not use colour information at all but rather normalises the
images and filter responses so as to achieve partial invariance to changes
in illuminant intensity.

2. The Basic Algorithm

Weak classification algorithms based on the statistical distribution of
filter responses have been particularly successful of late (Cula and
Dana, 2004; Konishi and Yuille, 2000; Leung and Malik, 2001; Schmid,
2001). Our classification algorithm too is one such and, as is customary
amongst weak classifiers, is divided into a learning stage and a classifi-
cation stage. In the learning stage, training images are convolved with
a filter bank to generate filter responses (see figure 4). Exemplar filter
responses are chosen as textons (via K-Means clustering (Duda et al.,
2001)) and are used to label each filter response, and thereby every
pixel, in the training images. The histogram of texton frequencies is
then used to form models corresponding to the training images (see
figure 5). In the classification stage, the same procedure is followed to
build the histogram corresponding to the novel image. This histogram is
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Figure 4. Learning stage I: Generating the texton dictionary. Multiple, un-
registered images from the training set of a particular texture class are convolved
with a filter bank. The resultant filter responses are aggregated and clustered into
textons using the K-Means algorithm. Textons from different texture classes are
combined to form the texton dictionary.
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Figure 5. Learning stage II: Model generation. Given a training image, its
corresponding model is generated by first convolving it with a filter bank and then
labelling each filter response with the texton which lies closest to it in filter response
space. The histogram of textons, i.e. the frequency with which each texton occurs
in the labelling, forms the model corresponding to the training image.

then compared with the models learnt during training and is classified
on the basis of the comparison (see figure 6). A nearest neighbour
classifier is used and the χ2 statistic employed to measure distances.
The histograms should be normalised to sum to unity, but this is not
required in our case as all training and testing images have the same
number of pixels.

Figure 6. Classification stage. A novel image is classified by forming its histogram
and then using a nearest neighbour classifier to pick the closest model to it (in the
χ

2 sense). The novel image is declared as belonging to the texture class of the closest
model.
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In the following subsections, we describe the filters and algorithmic
steps in more detail. Classification results are presented on the CUReT
database, and compared with those of Leung and Malik (Leung and
Malik, 2001) and Cula and Dana (Cula and Dana, 2004).

2.1. Rotationally invariant filters

In this subsection, we introduce the rotationally invariant filter sets
that are used in the classification algorithm. We also describe two
other filter sets that will be used in classification comparisons in sub-
section 2.4. The aspects of interest are the dimension of the filter space,
and whether the filter set is rotationally invariant or not.

The four filter sets that will be compared are: those of Leung and
Malik (Leung and Malik, 2001) which are not rotationally invariant;
those of Schmid (Schmid, 2001) which are; and two reduced sets of
filters based on using the maximum response (which are again rota-
tionally invariant). Filter sets will be assessed by their classification
performance using textons clustered in their response spaces.

2.1.1. The Leung-Malik (LM) set
The LM set consists of 48 filters, partitioned as follows: first and second
derivatives of Gaussians at 6 orientations and 3 scales making a total
of 36; 8 Laplacian of Gaussian filters; and 4 Gaussians. The scale of
the filters range between σ = 1 and σ = 10 pixels. They are shown in
figure 7.

Figure 7. The LM filter bank has a mix of edge, bar and spot filters at multiple
scales and orientations. It has a total of 48 filters - 2 Gaussian derivative filters at
6 orientations and 3 scales, 8 Laplacian of Gaussian filters and 4 Gaussian filters.

2.1.2. The Schmid (S) set
The S set consists of 13 rotationally invariant filters of the form

F (r, σ, τ) = F0(σ, τ) + cos

(

πτr

σ

)

e−
r2

2σ2
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where F0(σ, τ) is added to obtain a zero DC component with the (σ, τ)
pair taking values (2,1), (4,1), (4,2), (6,1), (6,2), (6,3), (8,1), (8,2), (8,3),
(10,1), (10,2), (10,3) and (10,4). The filters are shown in figure 8. As
can be seen all the filters have rotational symmetry.

Figure 8. The S filter bank is rotationally invariant and has 13 isotropic, “Ga-
bor-like” filters.

2.1.3. The Maximum Response (MR) sets
The MR8 filter bank consists of 38 filters but only 8 filter responses. The
filter bank contains filters at multiple orientations but their outputs are
“collapsed” by recording only the maximum filter response across all
orientations. This achieves rotation invariance. The filter bank is shown
in figure 9 and consists of a Gaussian and a Laplacian of Gaussian
both with σ = 10 pixels (these filters have rotational symmetry), an
edge filter at 3 scales (σx,σy)={(1,3), (2,6), (4,12)} and a bar filter at
the same 3 scales. The latter two filters are oriented and, as in LM,
occur at 6 orientations at each scale. Measuring only the maximum
response across orientations reduces the number of responses from 38
(6 orientations at 3 scales for 2 oriented filters, plus 2 isotropic) to 8 (3
scales for 2 filters, plus 2 isotropic).

Figure 9. The MR8 filter bank consists of 2 anisotropic filters (an edge and a bar
filter, at 6 orientations and 3 scales), and 2 rotationally symmetric ones (a Gaussian
and a Laplacian of Gaussian). However only 8 filter responses are recorded by taking,
at each scale, the maximal response of the anisotropic filters across all orientations.
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The MR4 filter bank is a subset of the MR8 filter bank where the
oriented edge and bar filters occur at a single fixed scale (σx = 4,
σy = 12).

The motivation for introducing these MR filters sets is twofold. The
first is to overcome the limitations of traditional rotationally invariant
filters which do not respond strongly to oriented image patches and thus
do not provide good features for anisotropic textures. However, since
the MR sets contain both isotropic filters as well as anisotropic filters
at multiple orientations they are expected to generate good features
for all types of textures. Additionally, unlike traditional rotationally
invariant filters, the MR sets are also able to record the angle of maxi-
mum response. This enables us to compute higher order co-occurrence
statistics on orientation and such statistics may prove useful in discrim-
inating textures which appear to be very similar. We return to this in
subsection 4.2.

The second motivation arises out of a concern about the dimension-
ality of the filter response space. Quite apart from the extra processing
and computational costs involved, the higher the dimensionality, the
harder the clustering problem. In general, not only does the number
of cluster centres needed to cover the space rise dramatically, so does
the amount of training data required to reliably estimate each cluster
centre. This is mitigated to some extent by the fact that texture features
are sparse and can lie in lower dimensional subspaces. However, the
presence of noise and the difficulty in finding and projecting onto these
lower dimensional subspaces can counter these factors. Therefore, it
is expected that the MR filter banks should generate more significant
textons not only because of improved clustering in a lower dimensional
space but also because rotated features are correctly mapped to the
same texton.

2.2. Pre-processing

The following pre-processing steps are applied before going ahead with
any learning or classification.

First, before convolving with any of the filter banks, a central 200×
200 texture region is cropped and retained from every image and the
extraneous background data discarded. All processing is done on these
cropped regions and they are converted to grey scale and intensity
normalised to have zero mean and unit standard deviation. This nor-
malisation gives invariance to global (i.e. across the entire region) affine
transformations in the illumination intensity.

Second, all 4 filter banks are L1 normalised so that the responses of
each filter lie roughly in the same range. In more detail, each filter Fi in
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the filter bank is divided by ‖Fi‖1 so that the filter has unit L1 norm.
This helps vector quantization, when using Euclidean distances, as the
scaling for each of the filter response axes becomes the same (Malik
et al., 2001).

Third, following (Fowlkes et al., 2002; Malik et al., 2001) and moti-
vated by Weber’s law, the filter response at each pixel x is (contrast)
normalised as

F(x)← F(x) [log (1 + L(x)/0.03)] /L(x)

where L(x) = ‖F(x)‖2 is the magnitude of the filter response vector at
that pixel.

2.3. Textons by clustering

We now consider clustering the filter responses in order to generate a
texton dictionary. This dictionary will subsequently be used to define
texture models based on texton frequencies learnt from training images.

(a) S Textons

(b) LM Textons

(c) MR8 Textons

Figure 10. The first 100 textons recovered from 20 training textures using 13 images
per texture: (a) S textons. (b) LM textons. (c) MR8 textons. Note that the LM
textons are not rotationally symmetric.
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For each filter set, we adopt the following procedure for computing
a texton dictionary: A selection of 13 images is chosen randomly for
each texture (these images sample the variations in illumination and
viewpoint), the filter responses over all these images are aggregated,
and 10 texton cluster centres computed using the standard K-Means
algorithm (Duda et al., 2001). The learnt textons for each texture are
then collected into a single dictionary. For example, if there are 5 tex-
ture classes then the dictionary will contain 50 textons. Examples of
the textons for the S, LM and MR8 filter banks are shown in figure 10.

Our clustering task is considerably simpler than that of Leung and
Malik, and Cula and Dana (who use essentially the same filter bank)
as we are able to cluster in low, 4 and 8, dimensional spaces. This
compares to 13 dimensional for S, and 48 dimensional for LM (we are
not considering 3D textons at this point where the dimensionality is
960).

Concerning the rotation properties of the LM and MR textons, con-
sider a texture and an (in plane) rotated version of the same texture.
Corresponding features in the original and the rotated texture will map
to the same point in MR filter space, but to different points in LM. It
is therefore expected that more significant clusters will be obtained in
the rotationally invariant case. Secondly, for the LM filter set, which
is not rotationally invariant, it would be expected that its textons can
not classify a rotated version of a texture unless the rotated version is
included in the training set (both of these points are demonstrated in
figure 11).

Image LM Model MR Model LM Textons MR Textons
Figure 11. Classification of rotated textures. Two rotated images of Ribbed Paper
have been taken from the CUReT database (texture numbers 38 and 38B) and their
corresponding models generated using the LM and MR4 filter banks. Note that the
MR models are very similar while the LM models are not. Therefore, in the case of
MR, it is expected that by having one image present in the training set the other will
be classified correctly. However, this will not hold true for LM as its models are quite
dissimilar. Also note, that since the LM filter bank is not rotationally invariant, the
textons that are generated by the two images are rotated copies of each other while,
for MR, they are essentially the same.

This establishes that there is an advantage in being rotationally
invariant as rotated versions of the same texture can be represented by
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one histogram, while several are required for the LM textons. However,
there is still the possibility that rotation invariance has the disadvan-
tage that two different textures (which are not rotationally related)
have the same histogram. We address this point next, where we compare
classification rates over a variety of textures.

2.4. Classification Method and Comparison Results

In this subsection we perform three experiments to assess texture clas-
sification rates over 92 images for each of 20, 40 and 61 texture classes
respectively. The first experiment, where we classify images from 20
textures, corresponds to the setup employed by Cula and Dana (Cula
and Dana, 2004). The second experiment, where 40 textures are clas-
sified, is modelled on the setup of Leung and Malik (Leung and Malik,
2001). In the third experiment, we classify all 61 textures present in the
Columbia-Utrecht database. The 92 images are selected as follows: for
each texture in the database, there are 118 images where the viewing
angle θv is less than 60 degrees. Out of these, only those 92 are chosen
for which a sufficiently large region could be cropped across all texture
classes.

Each experiment consists of three stages: texton dictionary genera-
tion; model generation, where texture models are learnt from training
images; and, classification of novel images. The 92 images for each tex-
ture are partitioned into two, disjoint sets. Images in the first (training)
set are used for dictionary and model generation, classification accuracy
is only assessed on the 46 images for each texture in the second (test)
set.

Each of the 46 training images per texture defines a model for that
class as follows: the image is mapped (vector quantized) to a texton
distribution (histogram). Thus, each texture class is represented by a
set of 46 histograms. An image from the test set is classified by forming
its histogram and then choosing the closest model histogram learnt from
the training set. The distance function used to define closest is the χ2

statistic (Press et al., 1992).
In all three experiments we follow both (Cula and Dana, 2004)

and (Leung and Malik, 2001), and learn the texton dictionary from
20 textures (using the procedure outlined before in section 2.3). The
particular textures used are specified in figure 7 of (Leung and Malik,
2001).

In the first experiment, 20 novel textures are chosen (see figure 19a
in (Cula and Dana, 2004) for a list of the novel textures) and 20×46 =
920 novel images are classified in all. In the second experiment, the 40
textures specified in figure 7 of (Leung and Malik, 2001) are chosen and
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a total of 40 × 46 = 1840 novel images classified. Finally, in the third
experiment, all 61 textures in the Columbia-Utrecht database are clas-
sified using the same procedure. The results for all three experiments
are presented in table I.

# of texture classes

filters 20 40 61

S 96.30% 95.27% 94.62%

LM 96.08% 93.75% 93.44%

MR4 94.13% 92.07% 90.73%

MR8 97.83% 96.41% 96.40%

Table I. Comparison of the classification rates for varying number of texture classes
for each of the four filter sets. In all cases, a dictionary of 200 textons learnt from
20 textures is used and there are 46 models per texture class.

2.4.1. Discussion
Two points are notable in these results. First, the MR8 and S filters
out perform the LM filters. This is a clear indicator that a rotationally
invariant description is not a disadvantage (i.e. salient information
for classification is not lost). Second, the fact that MR8 does better
than S and LM is also evidence that it is detecting better features, for
both isotropic and anisotropic textures, and that clustering in a lower
dimensional space can be advantageous. The MR4 filter bank loses out
because it only contains filters at a single scale and hence can’t extract
such rich features. What is also very encouraging with these results is
that as the number of texture classes increases there is only a small
decrease in the accuracy of the classifier.

3. Reducing the number of models

In this section, our objective is to reduce the number of training models
required to characterise each texture class. In the previous section,
the number of models was the same as the number of training im-
ages (and in effect (Leung and Malik, 2001) used 20 models/images
for every texture). Here, we want to reduce the number of models to
that appropriate for each class, independent of the number of training
images.

One would expect that the number of different models that are
needed to characterise a texture is a function of how much the texture
changes in appearance with imaging conditions, i.e. it is a function
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of the material properties of the texture. For example, if a texture is
isotropic then the effect of varying the lighting azimuthal angle will be
less pronounced than for one that is anisotropic. Thus, other parameters
(such as relief profile) being equal, fewer models would be required for
the isotropic texture (than the anisotropic) to cover the changes due
to lighting variation. This is demonstrated in figure 12.

Figure 12. Models per texture: The top row shows four images of the same texture,
Ribbed Paper, photographed under different viewing and lighting conditions. The
images look very different. The bottom row shows images of Rough Paper taken
under the same conditions as the images in the first row. These images don’t
differ so markedly because the texture doesn’t exhibit surface normal effects. The
consequence is that fewer models are required to represent Rough Paper over all
viewpoints and lighting than for Ribbed Paper.

However, if we are selecting models for the express purpose of clas-
sification, then another parameter, the inter class image variation, also
becomes very important in determining the number of models. For
example, even if a texture varies considerably with changing imaging
conditions it can be classified accurately using just a few models if all
the other textures look very different from it. Conversely, if two tex-
tures look very similar then many models may be needed to distinguish
between them even if they do not show much variation individually.

Broadly speaking, there are two major approaches to the problem
of model reduction. In the first, various concepts from the Machine
Learning literature can be used to select a subset of the models while
maximising some criteria of classification and generalisation. The sec-
ond approach is geometric and focuses on building descriptors invariant
to imaging conditions so as to reduce the number of models needed.
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3.1. Model selection

Many Machine Learning techniques have been developed to reduce the
number of models in a classification algorithm. One of the simplest
examples (Duda et al., 2001), for a nearest neighbour classifier, is to
remove each model for which all the neighbouring models belong to
the same class. This can be done safely as these models make no con-
tribution in determining the classification boundaries (as can be seen
from the Voronoi tessellation). However, in practise this has often been
found not to lead to a substantial reduction in the number of models. It
is also possible to reduce the number of models by completely switch-
ing classifiers. For instance, Support Vector Machines (Cristianini and
Shawe-Taylor, 2000; Hayman et al., 2004; Kim et al., 2002; Scholkopf
and Smola, 2002), and perhaps more appropriately Relevance Vector
Machines (Tipping, 2001), are both capable of reducing the number of
models while providing good generalisation.

In this subsection, we investigate two schemes for model reduction
in a nearest neighbour classifier framework. Both these schemes take
into account the inter and intra class image variation. Two types of
experiments are performed for either method. In the first, models are
selected only from the training set and classification results reported
only on the test set. In the second type, the classification experiments
are modified slightly so as to maximise the total number of images
classified. Following (Cula and Dana, 2004), if only M models per
texture are used for training, then the rest of the 46 − M training
images are added to the 46 test images so that a total of 92−M images
are classified per material. For example, when classifying 61 textures,
if only M = 10 models are used on average then a total of 82 images
per texture are classified giving a total of 82× 61 = 5002 test images.
This is done so as to be able to make accurate comparisons with (Cula
and Dana, 2004). The texton dictionary used in all experiments is the
same as the one in the previous section and has 200 textons.

3.1.1. K-Medoid algorithm
Each histogram may be thought of as a point in IRN , where N is the
number of bins in the histogram, so that the models for a particular
texture class simply consist of a set of points in IRN space. Given a
distance function between two points, in our case χ2, the set of points
corresponding to a texture’s models may be clustered into representa-
tive centres, and the set of points then replaced by the centres. There
are many choices that can be made at this point, for example whether
to cluster only within a texture class, or to take into account other
classes when clustering, or to cluster the histograms of all the training
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images irrespective of class (i.e. all the training images taken from all
the texture classes). Here we only investigate the last case.

The clustering is implemented using the K-Medoid algorithm. This is
a standard clustering algorithm (Kaufman and Rousseeuw, 1990) where
the update rule always moves the cluster centre to the nearest data
point in the cluster, but does not merge the points as in the case of the
more popular K-Means. The K-Means algorithm can only be applied
to points within a texture class. It can not be applied across classes as
it merges data points and thus the resultant cluster centres can not be
identified uniquely with individual textures. This is not a problem with
the K-Medoid algorithm as the cluster centres are always data points
themselves. Table II lists the results of classifying 20 textures using the
four different filter banks with K = 60, 120 and 180, resulting in an
average of 3, 6 and 9 models per texture.

Average # of models per texture Average # of models per texture

filters 3 6 9 3 6 9

S 77.47% 86.05% 91.08% 75.87% 85.76% 90.65%

LM 75.28% 85.06% 89.52% 74.89% 85.22% 89.35%

MR4 71.07% 80.93% 86.39% 71.09% 81.85% 84.57%

MR8 77.08% 89.88% 93.55% 79.35% 89.57% 93.59%

(a) (b)
Table II. Classification results for each of the four filter sets when the models are
automatically selected by the K-Medoid algorithm. In (a), the training and test sets
are kept distinct while in (b) the images from the training set which are not selected
as models are added to the test set and classified. Both types of experiments give
very similar results, even though many more images have to be classified correctly
in (b) to achieve the same performance as in (a). In all cases a dictionary of 200
textons is used and there are 20 textures being classified.

For MR8, the classification rate with 9 K-Medoid selected models
per texture is almost as good as the 97.83% obtained using all 46 models
(see column 1 in table I). In the first type of experiment (table IIa) an
accuracy of 93.55% is achieved while the second type (table IIb) obtains
an accuracy of 93.59% while classifying many more test images. How-
ever, clustering does have the disadvantage that very similar models are
aggregated into a single cluster even if they come from different texture
classes. Similarly, many clusters centres, rather than just one, might be
used to represent models which are spread apart even if they belong to
the same texture class. Both these shortcomings can be overcome by
using a greedy algorithm which prunes the list of models on the basis
of classification boundaries.
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3.1.2. Greedy algorithm
An alternative to the K-Medoid clustering algorithm is a greedy al-
gorithm, based on the post-processing step of the reduced nearest
neighbour rule (Gates, 1972; Toussaint, 2002), designed to maximise
the classification accuracy while minimising the number of models used.
The algorithm is initialised by setting the number of models equal to
the number of training images available. Then, at each iteration step,
one model is discarded. This model is chosen to be the one for which
the classification accuracy decreases the least when it is dropped. This
iteration is repeated until no more models are left. Note that while
the algorithm is constrained to select models only from the training
set, classification performance is being assessed on the test set. This
emulates the setup of (Cula and Dana, 2004) where the model reduction
algorithm has access to both training and test images for each texture
class and should therefore facilitate a faithful comparison with their
work. However, it must be emphasised that in real world classification,
the test set is not available for inspection to the training set and in
such situations it is preferable to subdivide the training set further
into model learning and validation sets.

Average # of models per texture Average # of models per texture

filters 3 6 9 3 6 9

S 88.80% 96.30% 96.30% 88.37% 97.21% 98.01%

LM 87.28% 96.09% 96.20% 86.69% 95.99% 97.83%

MR4 85.22% 94.02% 94.24% 85.00% 93.66% 96.39%

MR8 93.70% 97.83% 97.83% 90.28% 98.14% 98.80%

(a) (b)
Table III. Classification rates for each of the four filter sets when the models are
automatically selected by the Greedy algorithm. In (a), the test set is kept distinct
by not adding discarded models to it while in (b) the discarded models are added to
the test set and classified. A dictionary of 200 textons is used in all cases and there
are 20 textures being classified.

Table III lists the results of classifying 20 textures using the four
different filter banks. It is very interesting to note that the classification
accuracy obtained using 9 models can actually be better than that
obtained using all 46 models (see column 1 in table I). In table IIIa, this
implies that using a fewer number of models can improve performance
and that the greedy algorithm is good at rejecting noisy or outlier
models. In table IIIb, this also indicates that most of the training
images being added to the test set are being classified correctly.



A Statistical Approach to Texture Classification from Single Images 19

Figure 13 shows the resultant classification accuracy versus num-
ber of models for the four filter banks when classifying 20, 40 and 61
textures. For MR8, a very respectable classification rate of over 97%
correct is achieved using on an average only 9 models per texture, even
when all 61 classes are included. Figure 14 shows the 9 textures that
were assigned the most models as well as the 9 textures that were
assigned the least models while classifying all 61 textures.
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Figure 13. Classification rates for models selected by the Greedy algorithm for 20,
40 and 61 textures. In these experiments, the images from the training set which
were not selected as models were added to the test set, as in table IIIb. The general
ordering of the curves, in terms of decreasing classification performance, is MR8, S,
LM and MR4. The trend is much the same even below 2 models per texture class
though the graphs have been truncated for visualisation purposes. However, the
ordering can sometimes change as is seen in the case while classifying 40 textures
when LM slips below MR4 at between 2 and 4 models.

3.1.3. Discussion
The results for both the K-Medoid and the Greedy algorithms, while
using the MR8 filter bank, compare very favourably with those reported
in (Cula and Dana, 2004) and (Leung and Malik, 2001). In the case
where there are 20 textures to be classified, the K-Medoid algorithm has
a classification accuracy of 93.59% while using, on average, 9 models
per texture class while the Greedy algorithm achieves an accuracy of
98.80%. In contrast, for the same 20 textures, Cula and Dana obtain
a classification rate of 71% while using 8 models per texture class (by
taking the most significant image from each texture and using a mani-
fold merging procedure). This increases marginally to 72% if 11 models
are used per texture (see figure 19b and table 4 in (Cula and Dana,
2004)). Note that the comparison is not exact since we classify only
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Figure 14. Models selected by the Greedy algorithm while classifying all 61 textures:
The top row shows the 9 texture classes, and the corresponding number of models,
that were assigned the most number of models by the Greedy algorithm while the
bottom row shows the 9 classes that were assigned the least number of models.
Moving from left to right, the textures and the number of models assigned to it
are: Artificial grass (17), Sandpaper (15), Velvet (13), Plaster B (13), Rug A (13),
Terrycloth (12), Aluminium Foil (12), Quarry Tile (12), White Bread (12), Lettuce
Leaf (4), Sponge (4), Cracker A (3), Peacock Feather (3), Corn Husk (3), Straw (3),
Painted Spheres (3), Roof Shingle (3) and Limestone (2).

92− 9 = 83 images per texture class as compared to the 156− {8, 11}
classified by Cula and Dana. Hence, (Cula and Dana, 2004) classify
many more images, some of which might be quite hard to categorise
correctly because of the oblique viewing angle.

Nevertheless, there is a significant level of difference between the
performance of the K-Medoid and the Greedy algorithms on one hand
and the manifold method of (Cula and Dana, 2004) on the other. This
is primarily due to the fact that the methods developed here take into
account both the inter class variation, as well as intra class variation.
The models that Cula and Dana learn are general models and not
geared specifically towards classification. They ignore the inter class
variability between textures and concentrate only on the intra class
variability. The models for a texture are selected by first projecting all
the training and test images into a low dimensional space using PCA.
A manifold is fitted to these projected points, and then reduced by
systematically discarding those points which least affect the “shape” of
the manifold. The points which are left in the end correspond to the
model images that define the texture. Since the models for a texture
are chosen in isolation from the other textures, their algorithm ignores
the inter class variation between textures.

For 40 textures, Leung and Malik report an accuracy rate of 95.6%
for classifying multiple (20) images using, in effect, 20 models per tex-
ture class. For single image classification under known imaging condi-
tions, using 4 models per texture class results in a drop in the accuracy
rate to 87% (as computed for 5 test images per texture). The MR8
filter bank achieves 95.6% accuracy on the same textures using only 5.9
models per texture, and furthermore achieves 98.06% accuracy using,
on average, 8.25 models per texture.
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3.2. Pose normalisation

In this subsection we discuss some geometric approaches to model
reduction. In theory, these approaches are valid only in the absence
of 3D effects, i.e. for planar textures where illumination does not play
a major role, and where a 3D rotation and translation of the texture is
equivalent to an affine transformation of its image. However, in practise,
these methods are quite robust.

The fundamental idea is to incorporate some level of geometric in-
variance into a model. This will ultimately allow us to be invariant
to changes in the camera viewpoint and thereby reduce the number
of models required to characterise a texture. The use of rotationally
invariant filters is already a first step in this direction but the problem
of scale still needs to be resolved (we are ignoring perspective effects
for the moment). One approach could be to extend the MR sets to
take the maximum response not only over all orientations but over all
scales or over all affine transformations of the basic filter, but that
is not investigated here. Instead we investigate the method of pose
normalisation.

In (Schaffalitzky and Zisserman, 2001) it was demonstrated that,
provided a texture has sufficient directional variation, it can be pose
normalised by maximising the isotropy of its gradient second moment
matrix (a method originally suggested in (Lindeberg and G̊arding,
1994)). The method is applicable in the absence of 3D texture effects.
Here we investigate if this normalisation can be used to at least reduce
the effects of changing viewpoint, and hence provide tighter clusters of
the filter responses, or better still reduce the number of models needed
to account for viewpoint change.

In detail, if the normalisation is successful, then for moderate changes
in the viewing angle, two such “pose normalised” images of the same
texture should differ from each other by only a similarity transfor-
mation. If there are no major 3D scale effects, the responses of a
rotationally invariant filter bank (MR or S) to these images should be
much the same. A preliminary investigation shows that this is indeed
the case for suitable textures.

Figure 15 shows results for two textures - Plaster A and Rough
Plastic. Twelve images of each texture are selected to have similar
photometric appearance (i.e. constant illumination conditions), but
monotonically varying viewing angle. The graph shows the χ2 distance
between the texton histogram of one of the images (selected as the
model image) and the rest, before and after pose normalisation. As can
be seen, the χ2 distance is reduced for the pose normalised images. This
in turn translates to better classification as well. On experiments on 4
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textures, using the same 12 image set and one model per texture, the
classification rate increased from 81.81% before pose normalization to
93.18% afterwards.
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Figure 15. The effect of pose normalisation on a set of 12 images for two textures:
Rough Plastic and Plaster A. The 12 images have been sorted according to in-
creasing viewing angle and this is represented on the X axis. The Y axis is the χ

2

distance between the model image and the given image. The pose normalised images
consistently have a reduced χ

2 distance which translates into better classification.

One drawback of this method is that the proposed normalisation
is global rather than local. Not only would local normalisation be
more robust but it would also allow the method to be extended to
textures which are not globally planar but which can be approximated
as being locally planar. Realising this, (Lazebnik et al., 2003b; Lazebnik
et al., 2003a) proposed alternative methods of generating local, affine
invariant, texture features. In their framework, certain interest regions
are first detected in texture images using the Laplacian and Harris
detectors. Each of these regions is then scale and pose normalised
locally. Spin images are then used instead of filter banks to generate
rotationally invariant features for each region. Their results are very en-
couraging though no direct comparison is possible as their experiments
are not carried out on the CUReT database. One point of concern
however, is the reliance on the detection of blob like interest regions as
there exist many textures which do not exhibit such markings.
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4. Generalisations

In this section, we investigate the various generalisations and mod-
ifications that can be made to the basic classification algorithm. In
subsection 4.1, we study the effect of some of the more important
parameters on our classifier. In particular, the effect of the choice of
texton dictionary and training images is investigated. We also look
at how scaling the images impacts performance. Finally, the issue of
whether information is lost by using just the first order statistics of
rotationally invariant filter responses is discussed in section 4.2. A
method for reliably measuring relative orientation texton co-occurrence
is presented in order to incorporate second order statistics into the
classification scheme.

4.1. Algorithm parameter variations and the issue of scale

In this subsection, various parameters of the algorithm are varied and
the effect on the classification performance determined. We first cal-
culate a benchmark classification rate and then vary the images in
the training set and also the size of the texton dictionary to see how
performance is affected.

For the benchmark case, the texton dictionary is built by learning 10
textons from each of the 61 textures (using the procedure described in
subsection 2.3) to have a total of 610 textons. The 46 training images
per texture from which the models will be generated are chosen by
selecting every alternate image from the set of 92 available. Under these
conditions, the MR8 filter bank achieves a classification accuracy of
96.93% using 46 models per texture for all 61 textures. On running the
greedy algorithm the classification accuracy increases to 98.3% using,
on average, only 8 models per texture. This defines the benchmark rate.

We now investigate the effect of choice of textons on the classification
performance. First we reduce the number of textons by learning 10 tex-
tons from only 31 randomly chosen textures to get a dictionary of 310
textons, and then repeat the experiment of section 2. The classification
rate decreased only slightly from the benchmark to 98.19%.

The number of textons in the dictionary can be further reduced by
merging textons which lie very close to each other in filter response
space. The texton dictionary can be pruned down from 310 to 100 by
selecting 80 of the most distinct textons (i.e. those textons that didn’t
have any other textons lying close by) and then running K-Means, with
K = 20, on the rest. This procedure entailed another slight decrease
in the classification accuracy to 97.38%. These results indicate that
the pruned dictionaries are still universal (Leung and Malik, 2001), i.e.



24 Varma and Zisserman

texton primitives learnt from some randomly chosen texture classes can
be used to successfully characterise other classes as well.

We now increase the size of the texton dictionary to see if classifica-
tion improves accordingly. Table IV gives a summary of the results. The
best performance is obtained with a dictionary of 2440 textons when
the classification accuracy is 97.43% using 46 models per texture. On
running the greedy algorithm, the number of models used is reduced to,
on average, 7.14 per texture. If the unused training images are added
to the test set, the classification rate improves to 98.61%.

Essentially we are comparing different representations of the joint
probability distribution of filter responses in terms of their classification
performance. A set of textons can be thought of as adaptively partition-
ing the space of filter responses into bins (determined by the Voronoi
diagram) and a histogram of texton frequencies can be equated to a
probability distribution over filter responses (Varma and Zisserman,
2005). In such a situation, the number of bins should not be too few
otherwise the approximation to the true PDF will be poor nor should
there be too many bins so as to prevent over-fitting.

Number of Before Greedy After Greedy

Textons Classification Models Classification Models

1220 97.11% 46 98.43% 7.56

1830 97.18% 46 98.49% 7.26

2440 97.43% 46 98.61% 7.14

3050 97.32% 46 98.57% 7.41

Table IV. The effect of increasing the size of the texton dictionary while classifying
all 61 textures from the CUReT database.

As can be seen in table IV there is a point beyond which increasing
the number of textons actually decreases performance as the data is
now being over fitted. This can be used to automatically select the
appropriate number of textons for a given problem by partitioning the
data into a training and validation set and then choosing the texton
dictionary which maximises classification on the validation set.

We now turn to the choice of training images. It could be argued
that the results presented here are biased as the training set has been
chosen by including every alternate image from the set of 92 available
per texture. We address this issue by repeating the classification exper-
iment but with the training images chosen randomly. The dictionary of
2440 textons generated previously is used and the experiment repeated
50,000 times. Figure 16 shows the distribution of classification results
when 46 images were chosen randomly from every texture class to form
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Training images Classification Statistics

per texture Mean STD Min Max

46 97.28% 0.316% 95.72% 98.40%

23 94.22% 0.456% 91.97% 95.82%

12 89.02% 0.679% 85.92% 91.84%

6 80.67% 0.986% 76.46% 84.50%

3 69.70% 1.373% 63.90% 75.52%

Table V. Classification statistics when the training images were chosen randomly.
A dictionary of 2440 textons was used and all 61 textures were classified. In each
case, the statistics were gathered over 50,000 runs of the classification experiment.

the training set while table V provides a summary of the results for
varying sizes of the training set. The mean classification accuracy when
the 46 models were chosen randomly was 97.28% which is very similar
to the 97.43% obtained when the 46 images were chosen by including
every alternate image. This shows that our experimental setup is not
biased and that we are not over fitting to the data.

In summary, the best classification rate achieved, while classifying all
61 textures, was 98.61% obtained when 2440 textons were used and the
worst rate was 97.38% when only 100 textons were used. These results
are listed in table VI. We can therefore conclude that our algorithm is
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Figure 16. The distribution of classification percentages when 46 training images
are chosen randomly per texture from the set of 92 available. The experiment was
run 50,000 times with a dictionary of 2440 textons and all 61 materials in the
CUReT database were classified. The mean classification accuracy was 97.28% with
a standard deviation of 0.316%. The maximum was 98.4% and the minimum was
95.72%.
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robust and relatively insensitive to the choice of training image set and
texton vocabulary with the classification rate not being affected much
by changes in these parameters.

Number of Before Greedy After Greedy

Textons Classification Models Classification Models

Worst 100 95.32% 46 97.38% 9.83

Benchmark 610 96.93% 46 98.30% 8.00

Best 2440 97.43% 46 98.61% 7.14

Table VI. Benchmark, worst and best case results for varying parameters of the
classification algorithm.

Finally, a word about scale. It may be of concern that the MR4 filter
bank does not have filters at multiple scales and hence will be unable
to handle scale changes successfully. To test this, 25 images from 14
texture classes were artificially scaled, both up and down, by a factor
of 3. The classification experiment was repeated using the original,
normal sized, filter banks and texton dictionaries. We found that as
long as models from the scaled images were included as part of the
texture class definition, classification accuracy was virtually unaffected
and classification rates of over 97% were achieved. However, if the choice
of models was restricted to those drawn from the original sized images,
then the classification rate dropped to 17%. It is evident from this that
filter bank and texton vocabulary are sufficient, and it is the model
that must be extended (see figure 17).

(a) (b) (c)
Figure 17. Scaling the data results in new models: The histogram of texton labellings
of (a) the original image (b) the image scaled up by a factor of 3 and (c) the image
scaled down by a factor of 3. All three models are substantially different indicating
that the model must be extended.

4.2. Orientation co-occurrence

The classification scheme, up to this stage, has only used informa-
tion about first order texton statistics (i.e. their frequency and not a
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measure of their co-occurrence). However, recent research into texture
driven content-based image retrieval (Schmid, 2001) has shown that a
hierarchical system which uses co-occurrence of textons over a spatial
neighbourhood can lead to good results. Therefore, in this subsection,
we investigate whether incorporating such second order statistics can
improve classification performance on the CUReT database.

As was seen in the previous subsection, classification on the basis of
texton frequency information alone is already very good and rates of
over 97% can be achieved. What is also interesting is that, of the images
that were misclassified, the correct texture class was ranked within the
top 5 most of the times. Figure 18 shows how similar one of the mis-
classified novel images is to both the top ranked, but incorrect, texture
model and the second ranked, but correct, model. Since the MR8 filter
bank is rotationally invariant, there is the possibility that some of these
misclassifications are due to two different texture classes, which are not
rotationally related, being mapped to the same texton frequency distri-
bution. Therefore, we focus on the question of whether incorporating
second order texton statistics, in the form of co-occurrence of angles,
can improve classification (though the method developed here is general
and can also be applied to spatial co-occurrence).

(a) (b) (c)
Figure 18. Misclassifications: (a) is an image of Artificial Grass taken from the test
set which was misclassified as (b) Pebbles. The next closest model image to (a) is
(c) which belongs to the correct texture class - Artificial Grass. The misclassified
novel image is perceptually quite similar to both the correct and the incorrect model
images.

4.2.1. Reliably measuring a relative orientation co-occurrence statistic
Given a texton in an image labelling, the objective is to measure the
relative angle of occurrence of surrounding textons, that lie within a
circular neighbourhood, with respect to the given texton. Certain dif-
ficulties have to be overcome in order to reliably measure this relative
angle co-occurrence. Firstly, the angles of occurrence of the textons
have to be measured robustly. Conventionally, working in a match filter
paradigm, the orientation of a feature (such as an edge or a bar) is
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(a) (b) (c)
Figure 19. Determining the orientation of image features: The top row shows images
of 3 textures (a) Corduroy, (b) Rough Plastic and (c) Frosted Glass, with a high-
lighted central image patch which is matched with an edge filter at all orientations.
The magnitude of the filter response versus the orientation is plotted in the bottom
row. As can be seen: (a) is a strongly oriented texture having a single direction and
therefore its filter response is uni-modal; (b) the texture contains edges along several
directions and this is reflected in its filter response; (c) the texture is isotropic and
the features have no specific orientation. Plots (b) and (c) show that defining the
orientation of a feature to be the angle at which the maximal filter response occurs
can be unstable.

determined to be the angle of maximum response of a filter designed to
match that feature. However, features can occur at multiple angles at
the same point and, as such, it is difficult to assign them a particular
orientation (see figure 19). For instance, an edge filter will have a maxi-
mal response at two orientations when matching a corner and choosing
one edge orientation over the other will lead to instabilities. Note that
these instabilities do not affect the MR representation because only
the value of the response (not its angle) is significant — if the same
value occurs at two orientations the orientation corresponding to the
maximum response is unstable, but the maximum response is not. Here
we use the orientated filter (of MR8) that has the maximum response
to determine the orientation.
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Returning to relative orientation, a robust representation can be
obtained if the magnitude of the filter response at each angle (nor-
malised so that the sum of magnitudes squared over all angles is unity)
is treated as a confidence measure in the feature occurring at that
orientation. Thus, in our case, this normalised magnitude vector will be
a 6 vector representing the confidence that the given feature occurs at
the 6 angles corresponding to the orientations present in the MR8 filter
bank (though a richer representation can be obtained using approxi-
mated steerable kernels and interpolation (Perona, 1992)). The relative
angles between two features, which is invariant to rotation, can now be
calculated by computing the cross-correlation between their normalised
magnitude vectors. Given a central texton, we can compute the fre-
quency with which other textons occur at various relative angles to it
by forming the sum of the cross-correlations between the normalised
magnitude vectors of the central texton and the surrounding textons.
Essentially, this is computing (via soft binning) the count of how many
times a neighbouring texton occurs at a given angle relative to the cen-
tral texton. To maintain rotational invariance, the surrounding textons
come from a circular neighbourhood with a predefined radius, centred
around the given texton.

4.2.2. Extending the classification algorithm
Now that a co-occurrence 6-vector can be associated with every texton
in an image labelling, the classification algorithm can be extended to
use the joint distribution of filter responses and co-occurrence vectors.
Just as filter responses were clustered into filter response textons in
section 2.3, co-occurrence vectors can be clustered to find exemplars as
well, and a dictionary of co-occurrence vector textons can be formed.
Textons from this dictionary can be used to label the co-occurrence
vectors for a given image. The model for a training image then becomes
the joint histogram of the frequency of occurrence of filter response
textons and co-occurrence vector textons. Thus, a model is an Kfr×Kcv

matrix M where Kfr is the number of filter response textons and Kcv

is the number of co-occurrence vector textons. Each entry Mij in this
matrix represents the probability of filter response texton Kfri

and
orientation co-occurrence texton Kcvj

occurring together in the training
image. This is somewhat similar to the co-occurrence representation
of (Schmid, 2001). To classify a novel image, its joint histogram is built
and is then compared to all the models using χ2 over all elements of
the M matrix. Thus, the essence of the classifier remains the same,
the only extension is that joint distribution of filter response and co-
occurrence textons are used rather than just the histogram of filter
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response textons. Hence, we get to add extra information and yet retain
all the benefits of our existing classification scheme.

4.2.3. Experimental Setup and Results
The orientation co-occurrence texton dictionary is created by cluster-
ing the co-occurrence vectors (calculated for a particular radius of the
circular neighbourhood) from the same set of 13 training images per
texture that were used to generate the filter response texton dictionary.
The filter responses and co-occurrence vectors of the training images
are then labelled using the two texton dictionaries. Finally, the models
are built by forming the frequencies, in the Kfr ×Kcv texton space, of
the joint occurrence of the filter response textons and the orientation
co-occurrence textons.

Obviously, the choice of Kfr and Kcv is important as Kfr × Kcv

equals the number of bins and therefore determines how accurately the
joint PDF is approximated. However, we cannot choose Kfr = 610 as
had been done previously, because the number of bins becomes too
large and we start over-fitting the data (see table VII (a)-(c)). A lower
value, such as Kfr = 30, was found to be more appropriate. Table VII
(d)-(f) lists the classification results obtained for various values of the
radius when Kcv is also set to 30. The performance, using the joint
representation, is better than using just 30 filter response textons or
just 30 co-occurrence vector textons. Though it is worse than if 900 filter

610 FR 610 CV 610 × 610 30 FR 30 CV 30 × 30

Radius Textons Textons Joint Textons Textons Textons Joint Textons

(a) (b) (c) (d) (e) (f)

01 96.86% 74.51% 88.02% 92.94% 63.93% 95.22%

02 96.75% 68.13% 85.28% 92.62% 60.08% 94.72%

05 96.86% 65.39% 85.88% 92.87% 54.84% 94.15%

10 96.65% 61.26% 85.13% 92.23% 48.68% 93.33%

Table VII. Classification results for all 61 textures using 46 models per texture when
orientation co-occurrence information is incorporated into the classification scheme.
(a) classification accuracy if only 610 filter response (FR) textons are used to label
images and build models. There are minor variations in the classification rate as the
number of points available for labelling changes with the radius. (b) classification
accuracy if only 610 co-occurrence vector (CV) textons are used. (c) classification
rate if the joint distribution is used. The results are poor as there are too many bins
and the data is being over fitted. The next three columns have the same format
except now both the texton dictionaries have been pruned to 30 textons each. The
joint classification rate improves and is better than either of the marginals, though
it is still not as good as that obtained by just using 900 FR textons.
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response textons were used without any co-occurrence. If the radius is
kept fixed and Kcv varied then the performance of the joint represen-
tation, predictably, first increases, reaches a maximum and then falls
(though in no case is it ever able to surpass the performance achieved
using an equivalent number of filter response textons alone).

These results indicate, that at least for this dataset, the density of
filter response textons is the best measure of discrimination and that
orientation co-occurrence does not help much in classification (similar
results were found for spatial co-occurrence as well). They also con-
firm that rotational invariance is advantageous and that no significant
information is being lost in this case by using a rotationally invariant
filter bank.

5. Conclusions

In this paper, we have tackled the problem of texture classification
and have demonstrated how single images can be classified using a few
models without requiring any information about their imaging con-
ditions. This is a substantial improvement over previous work which
required multiple images obtained under known conditions. We have
also introduced rotationally invariant, low dimensional, maximum re-
sponse filter banks which were shown to have superior performance
as compared to traditional filters due to enhanced feature detection
and clustering. Moreover, we presented two novel methods for reduc-
ing the number of models needed to characterise textures and again
demonstrated their superiority over existing algorithms. It was also
shown that the proposed classification scheme is robust to the choice
of training images and texton dictionaries. Finally, we concluded that
even though the classifier can be extended by incorporating second
order statistics this does not lead to an improvement in the overall
classification. This implies that using only the frequency distribution
of textons is sufficient and that no significant information is being lost
by employing rotationally invariant filter banks for this database.

This research has benefited greatly from the availability of the Columbia-
Utrecht database. The CUReT database is a considerable improvement
over the previously used Brodatz collection (Brodatz, 1966), though it
also has some limitations. Its main advantages are that it has many real
world textures photographed under varying image conditions, and the
effects of specularities, shadowing and other surface normal variations
are evident. The limitations of the CUReT database are mainly in the
way the images have been photographed and the choice of textures. For
the former, there is no significant scale change for most of the textures
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and limited in-plane rotation. As regards choice of texture, the most
serious drawback is that multiple instances of the same texture are
present for only a very few of the materials, so intra-class variation
cannot be investigated. Hence, it is difficult to make generalisations.

The time is now right for a yet more demanding database which
overcomes the above limitations, and also includes non-planar surfaces.
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