
RNNPool: Efficient Non-linear Pooling for RAM
Constrained Inference

Oindrila Saha†, Aditya Kusupati‡,
Harsha Vardhan Simhadri†, Manik Varma† and Prateek Jain†

†Microsoft Research India, ‡University of Washington
{t-oisaha,harshasi,manik,prajain}@microsoft.com, kusupati@cs.washington.edu

Abstract

Standard Convolutional Neural Networks (CNNs) designed for computer vision
tasks tend to have large intermediate activation maps. These require large working
memory and are thus unsuitable for deployment on resource-constrained devices
typically used for inference on the edge. Aggressively downsampling the images
via pooling or strided convolutions can address the problem but leads to a signifi-
cant decrease in accuracy due to gross aggregation of the feature map by standard
pooling operators. In this paper, we introduce RNNPool, a novel pooling operator
based on Recurrent Neural Networks (RNNs), that efficiently aggregates features
over large patches of an image and rapidly downsamples activation maps. Empirical
evaluation indicates that an RNNPool layer can effectively replace multiple blocks
in a variety of architectures such as MobileNets, DenseNet when applied to stan-
dard vision tasks like image classification and face detection. That is, RNNPool
can significantly decrease computational complexity and peak memory usage for in-
ference while retaining comparable accuracy. We use RNNPool with the standard
S3FD [50] architecture to construct a face detection method that achieves state-of-
the-art MAP for tiny ARM Cortex-M4 class microcontrollers with under 256 KB
of RAM. Code is released at https://github.com/Microsoft/EdgeML.

1 Introduction

Convolutional Neural Networks (CNNs) have become ubiquitous for computer vision tasks such
as image classification and face detection. Steady progress has led to new CNN architectures that
are increasingly accurate, but also require larger memory and more computation for inference. The
increased inference complexity renders these models unsuitable for resource-constrained processors
that are commonplace on the edge in IoT systems and battery-powered and privacy-centric devices.

To reduce inference complexity, several techniques like quantization [44], sparsification [9, 27],
cheaper CNN blocks [37, 22], or neural architecture search [41] have been proposed to train CNN
models with lower inference cost and model size while retaining accuracy. However, these models
still require large working memory for inference. Memory tends to be the most constrained resource
on low power devices as it is often the component with the highest sustained power consumption [24].
As a result, most low power ARM Cortex-M* microcontrollers typically have less than 256 KB RAM.

Typical CNNs have large intermediate activation maps, as well as many convolution layers, which
put together require large amount of RAM for inference (see Proposition 1). A standard approach to
reducing working memory is to use pooling operators or strided convolution to bring down size of the
activation map. In fact, standard CNNs have multiple such layers. However, such pooling operators
aggregate the underlying activation map in a simplistic manner, which can lead to a significant loss of
accuracy. As a result, their use is limited to small receptive fields, typically no larger than 3× 3, and
they can not be used to aggressively reduce the activation map by aggregating larger receptive fields.

34th Conference on Neural Information Processing Systems (NeurIPS 2020), Vancouver, Canada.

https://github.com/Microsoft/EdgeML

k

4*h2

c

r

First sweep with RNN1

(blue arrows share weights)

Second sweep with RNN2

(green arrows share weights)

RNNPool(r, c, k, h1, h2)

Hidden state size of RNN1

Hidden state size of RNN2

k #Input channels

h1

h2

Figure 1: The RNNPool operator applied to
patches of size r × c with stride s. It summarizes
the patch with two RNNs into a vector of size 4h2.

In this paper, we propose a novel pooling op-
erator RNNPool that uses Recurrent Neural
Networks (RNNs) to perform a more refined
aggregation over a large receptive field of the
activation map without compromising on accu-
racy. RNNPool can be applied to any tensor
structured problem, but we focus on 2D images
for ease of exposition. For images, RNNPool
uses RNNs to aggregate information along rows
& columns in a given patch. RNNPool has
three parameters – patch size or receptive field,
stride, and output dimension – to control its ex-
pressiveness and ability to downsample. The
RNNPool operator matches standard pooling
operators syntactically, so can be used to replace them in convolutional networks.

RNNPool allows rapid down-sampling of images and activation maps, eliminating the need for many
memory-intensive intermediate layers. RNNPool is most effective when used to replace multiple
CNN blocks in the initial stages of the network where the activation map sizes are large, and hence,
require the most memory and compute. There, a single layer of RNNPool can down-sample by
a factor of 4 or 8. For example, RNNPool applied to a 640 × 640 × 3 image with patch-size 16,
stride 8, and 32 output channels results in a 80 × 80 × 32 activation map, which can be stored in
about 200 KB, and can be computed one patch at a time without significant memory cost. Replacing
a few blocks using RNNPool reduces peak memory requirement significantly for typical CNN
architectures without much loss of accuracy.

Our experiments demonstrate that RNNPool can be used as an effective replacement for multi-
layered, expensive CNN blocks in a variety of architectures such as MobileNets, DenseNets, S3FD,
and for varied tasks such as image classification and face detection. For example, in a 10-class image
classification task, RNNPool+MobileNetV2 reduces the peak memory requirement of MobileNetV2
by up to 10× and MAdds (MAdds refers to Multiply-Adds as in MobileNetV2 [37]) by about 25%,
while maintaining the same accuracy. Additionally, due to its general formulation, RNNPool can
replace pooling layers anywhere in the architecture. For example, it can replace the final average
pool layer in MobileNetV2 and improve accuracy by ∼ 1%.

Finally, we modify the S3FD [50] architecture with RNNPool to construct an accurate face detection
model which needs only 225 KB RAM – small enough to be deployed on a Cortex-M4 based device –
and achieves 0.78 MAP on the medium category of the WIDER FACE dataset [47] using 80× fewer
MAdds than EXTD [48] – a state-of-the-art resource-constrained face detection method.

In summary, we make the following contributions:

• A novel pooling operator that can rapidly down-sample input in a variety of standard CNN
architectures, e.g., MobileNetV2, DenseNet121 while retaining the expressiveness.

• Demonstrate that RNNPool can reduce working memory and compute requirements for image
classification and Visual Wake Words significantly while retaining comparable accuracy.

• By combining RNNPool with S3FD, we obtain a state-of-the-art face detection model for ARM
Cortex-M4 class devices.

2 Related Work

Pooling: Max-pooling, average-pooling and strided convolution layers [29] are standard techniques
for feature aggregation and for reducing spatial resolution in CNNs. Existing literature on rethinking
pooling [51, 15, 10] focuses mainly on increasing accuracy and does not take compute/memory
efficiency into consideration which is the primary focus of this paper.

Efficient CNN architectures: Most existing research on efficient CNN architectures aims at re-
ducing model size and number of operations per inference. These methods include designing new
architectures such as DenseNet [21], MobileNets [20, 37] or searching for them (ProxylessNAS [3],
EfficientNets [41], SqueezeNAS [38]). These architectures do not primarily optimize for the peak
working memory, which is a critical constraint on devices powered by tiny microcontrollers. Previ-

2

ous work on memory-optimized inference manipulates existing convolution operator by reordering
computations [5, 28] or performing them in place [13]. However, most of these methods provide
relatively small memory savings and are validated on low-resolution images like CIFAR-10 [25].
Channel pruning [17] is a method that tries to reduce memory requirement by pruning out multiple
convolution kernels in every layer. While effective, channel/filter pruning does not tackle gradual
spatial downsampling and thus is a complementary technique to RNNPool.

Visual Wake Words: Visual cues (visual wake word) to “wake-up" AI-powered home assistant
devices require real-time inference on relatively small devices. Chowdhery et al. [6] proposed a Visual
Wake Words dataset and a resource-constrained setting to evaluate various methods. Section 5.2
discusses the efficient RNNPool based models and their performance for this task.

Face-detection on tiny devices: Recent work including EXTD [48], LFFD [18], FaceBoxes [49]
and EagleEye [52] address the problem of accurate real-time face detection on resource-constrained
devices. EXTD and LFFD are the most accurate but have high compute and memory requirements.
On the other hand, EagleEye and FaceBoxes have lower inference complexity but also suffer from
lower MAP scores. Face detection using RNNPool is discussed in Section 5.3.

RNNs for Computer Vision: RNNs have been successful for sequential tasks but haven’t been
extensively explored in the context of computer vision. An early work, ReNet [42], uses RNN based
layer as a replacement for a convolution layer but does not aim at improving efficiency. RNNPool
contrasts with ReNet as follows:

a. ReNet is designed to replace a convolutional layer by capturing the global context and leaves the
local context to be captured by flattening non-overlapping patches. RNNPool, on the other hand,
uses overlapping patches and strongly captures local features and relies on subsequent standard
convolutions to capture the global context. Hence, RNNPool and ReNet are complementary
methods and can be combined.

b. Semantically, RNNPool is a generalized pooling operator and can replace any pooling layer or
strided convolution. However, ReNet does not correspond to any pooling abstraction, making
it hard to combine with existing CNN models. For example, RNNPool can modify S3FD
architecture to achieve state-of-the-art real-time face detection with < 1 MB RAM while ReNet
fails to fit in that context as a replacement layer since the receptive field of the output of ReNet
layer varies across spatial positions.

c. ReNet can still be used as a rapid downsampling layer. Table 2 shows that RNNPool out-
performs ReNet with lower model size and fewer MAdds across datasets and architectures.
E.g. ReNet+MobileNetV2 applied to ImageNet-1K is almost 4% less accurate than RNNPool
+MobileNetV2, despite the same working RAM requirement and more MAdds per inference.

Inside-Outside Net [2] uses a ReNet based layer for extracting context features in object detection
while PiCANet [31] uses it as a global attention function for salient object detection. L-RNN [45]
inserts multiple ReNet based layers but in a cascading fashion. See Appendix B for more discussion.

PolygonRNN [1], CNN-RNN [43] and Conv-LSTM [46] also use RNNs in their architectures but
only to model certain sequences in the respective tasks rather than tackling pooling and efficiency.

3 What is RNNPool?

Consider the output of an intermediate layer in a CNN of size R× C × f , where R and C are the
number of rows and columns and f is the number of channels. A typical 2× 2 pooling layer (e.g.
max or average) with stride 2 would halve the number of rows and columns. So, reducing dimensions
by a factor of 4 would require two such blocks of convolutions and pooling. Our goal is to reduce the
activation of size R × C × f to, say, R/4 × C/4 × f ′ or smaller in a single layer while retaining
the information necessary for the downstream task. We do so using an RNNPoolLayer illustrated in
Figure 1 that utilizes strided RNNPool operators.

3.1 The RNNPool Operator and the RNNPoolLayer

An RNNPool operator of size (r, c, k, h1, h2) takes as input an activation patch of size r × c × k
corresponding to k input channels, and uses a pair of RNNs – RNN1 of hidden dimension h1 and
RNN2 with hidden dimension h2 – to sweep the patch horizontally and vertically to produce a
summary of size 1× 1× 4h2.

3

Algorithm 1 RNNPool Operation

Input: X : [x1,1 . . .xr,c];xi,j ∈ Rk

Output: RNNPool(X)

1: function FastGRNN(P,x)
2: [W,U,bz,bh]← P , h0← randn
3: for k ← 1 to length(x) do
4: z← σ(Wxk +Uhk−1 + bz)

5: h̃k ← tanh(Wxk +Uhk−1 + bh)

6: hk ← z� hk−1 + (1− z)� h̃k

7: end for
8: return hT

9: end function

10: RNNi(_)← FastGRNN(Pi, _), for i ∈ {1, 2}
11: function RNNPool(X)
12: pr

i ← RNN1(Xi,1≤j≤c), for all 1 ≤ i ≤ r
13: qr1 ← RNN2(p

r
1≤i≤r)

14: p̃r ← reverse(pr), qr2 ← RNN2(p̃
r
1≤i≤r)

15: pc
j ← RNN1(X1≤i≤r,j), for all 1 ≤ j ≤ c

16: qc1 ← RNN2(p
c
1≤j≤c)

17: p̃c← reverse(pc), qc2 ← RNN2(p̃
c
1≤j≤c)

18: return [qr1 ,qr2 ,qc1 ,qc2]
19: end function

Algorithm 1 describes the RNNPool operator
wich applies two parallel pipelines to a patch
and concatenates their outputs. In the first,
RNN1 traverses each row and summarizes the
patch horizontally (Line 12) and then RNN2

trverses the outputs of RNN1 (Lines 13-14) bi-
directionally. In the second pipeline RNN1 first
traverses along columns to summarize the patch
vertically (Line 15) and then RNN2 (Lines 16-
17) summarizes bi-directionally.

While it is possible to use GRU [4] or
LSTM [19] for the two instances of RNN in
RNNPool, we use FastGRNN [26] for its com-
pact size and fewer MAdds (see Appendix H).

An RNNPoolLayer consists of a single
RNNPool operator strided over an input acti-
vation map and takes as input two more pa-
rameters: patch size and the stride length.
Note that there are only two RNNs (RNN1

& RNN2) in an RNNPool operator, thus
weights are shared for both the row-wise
and column-wise passes (RNN1) and all bi-
directional passes (RNN2) across every instance
of RNNPool in an RNNPoolLayer.

3.2 Probing the Efficacy of RNNPool

Capturing edges, orientations, and shapes: To demonstrate the capabilities of RNNs as spatial
operators for vision tasks such as capturing edges, orientations, and shapes, we performed experiments
on synthetic data. RNNPool learns how to capture edges, orientations, and shapes as effectively
as convolutional layers which reinforces the choice of RNNs as spatial operators. Appendix C.1
provides further details of these experiments.

Comparing performance with pooling operators: We also performed experiments to contrast
the down-sampling power of RNNPool against standard pooling operators on CIFAR-10 [25]. As
discussed in Appendix C.2, RNNPool significantly outperforms standard pooling operators in terms
of accuracy.

4 How to use the RNNPoolLayer?

C1
RNNPoolLayer
(8, 8, 112, 112, 4, 64, 48, 48) T2

192

28
112

224

64
3

D3 T3 D4

256 1024 512 1024 1024

14 14 7 7 1

C1 P1

112
224

64
3

D1 T1 D2 T2 D3 T3 D4

64 256 128 512 256 1024 512 1024 1024

56 56 28 28 14 14 7 7 1

Avg Pooling

FC + Softmax

FC + Softmax

DenseNet121-RNNPool

DenseNet121

Figure 2: DenseNet121-RNNPool: obtained by re-
placing P1, D1, T1 and D2 blocks in DenseNet121
with an RNNPoolLayer.

RNNPool can be used to modify standard CNN
architectures and reduce their working memory
as well as computational requirements. Typi-
cally, such modifications involve replacing one
or more stacks of convolutions and pooling lay-
ers of the “base” (original) architecture with an
RNNPoolLayer and retraining from scratch. We
describe architecture modification strategies here
and demonstrate their effectiveness through exten-
sive experimentation in Section 5.

Replacement for a Sequence of Blocks: Consider the DenseNet121 [21] architecture in Figure 2.
It consists of one convolutional layer, followed by repetitions of “Dense” (D), “Transition” (T) and
“Pooling” (P) blocks which gradually reduce the size of the image while increasing the number of
channels. Of all these layers, the first block following the initial convolutional layer (D1) requires
the most working memory and compute as it works on large activation maps that are yet to be
down-sampled. Further, the presence of 6 layers within each dense block makes it harder to work
with small memory (see Proposition 1). This is also true of other architectures such as MobileNetV2,
EfficientNet, and ResNet.

4

Table 1: Comparison of inference complexity and accuracy with and without RNNPoolLayer on ImageNet-10.

Model
Base

RNNPool
Accuracy

(%) Parameters Memory Optimised Standard Calculation [6, 37]

Peak RAM MAdds Peak RAM MAdds Accuracy (%) Parameters Peak RAM MAdds

MobileNetV2 94.20 2.20M 0.38 MB 1.00G 2.29 MB 0.30G 94.40 2.00M 0.24 MB 0.23G
EfficientNet-B0 96.00 4.03M 0.40 MB 1.09G 2.29 MB 0.39G 96.40 3.90M 0.25 MB 0.33G
ResNet18 94.80 11.20M 0.38 MB 21.58G 3.06 MB 1.80G 94.40 10.60M 0.38 MB 0.95G
DenseNet121 95.40 6.96M 1.53 MB 24.41G 3.06 MB 2.83G 94.80 5.60M 0.77 MB 1.04G
GoogLeNet 96.00 9.96M 1.63 MB 3.32G 3.06 MB 1.57G 95.60 9.35M 0.78 MB 0.81G

We can use an RNNPoolLayer to rapidly down-sample the image size and bypass intermediate large
spatial resolution activations. In DenseNet121, we can replace 4 blocks - P1, D1, T1, D2 - spanning
39 layers with a single RNNPoolLayer to reduce the activation map from size 112× 112× 64 to
28 × 28 × 128 (see Figure 2). The replacement RNNPoolLayer can be executed patch-by-patch
without re-computation, thus reducing the need to store the entire activation map across the image.
These two factors greatly reduce the working memory size as well as the number of computations.
DenseNet121-RNNPool achieves an accuracy of 94.8% on ImageNet-10 (see Appendix A for dataset
details) which is comparable to 95.4% of the original DenseNet121 model.

A similar replacement of functional blocks with RNNPoolLayer can be performed for MobileNetV2
as specified in Table 10 of Appendix F, and leads to a similar reduction in the size of the largest
activation map while retaining accuracy. These results extend to other networks like EfficientNet,
ResNet and GoogLeNet [40], where residual connection based functional blocks in the initial parts
can be effectively replaced with the RNNPoolLayer with improvements in working memory and
compute, while retaining comparable accuracy. These results are listed in Table 1. Appendix H
presents further ablation studies on RNNPool and its base model.

Replacement for Pooling Layers: RNNPool has the same input and output interface as any pooling
operator and hence, RNNPoolLayer can replace any standard pooling layer while providing more
accurate aggregation. For example, DenseNet121-RNNPool has three pooling layers one each in T2,
T3, and the final average pool layer. Table 1 shows that, on ImageNet-10, DensetNet121-RNNPool
loses 0.6% accuracy compared to its base model. But, replacing all three remaining pooling layers
in DenseNet121-RNNPool with a RNNPoolLayer results in almost the same accuracy as the base
DenseNet121 but with about 2× and 4× lower compute and RAM requirement respectively. We can
further drop 14 dense layers in D3 and 10 layers in D4 to bring down MAdds and RAM requirement
to 0.79G MAdds and 0.43 MB, respectively, while still ensuring 94.2% accuracy.

Replacement in Face Detection models: As in the above architectures, we can use RNNPoolLayer
to rapidly down-sample the image by a factor of 4 × 4 in the early phase of an S3FD face detec-
tor [50]. The resulting set of architectures (with different parameters) are described in Appendix
F.2. For example, the RNNPool-Face-Quant model has a state-of-the-art MAP for methods that are
constrained to at most 256 KB of working RAM (Table 4).

Inference memory requirements: Computing exact memory and compute requirement of a large
CNN model is challenging as the execution order of activations in various layers can be re-organized
to trade-off memory and compute. For example, in the memory-optimized column of Table 1 we
present the compute usage of a variety of baseline architectures when their execution order (EO) is
restricted to using no more memory than the corresponding RNNPool based architecture. That is, we
identify the memory bottleneck layers in various architectures whose activation map size is almost
same as that of the corresponding RNNPool-based model. We then compute every voxel of this
layer by re-computing the required set of convolutions, without storing them. CNNs, in general, have
significant compute requirement and such re-compute intensive optimizations make the architecture
infeasible even for large devices, e.g. DenseNet121 requires 24.41G MAdds in this scheme (Table 1).

A standard approach is to restrict execution orders that do not require any re-computation of intermedi-
ate activation maps. A straightforward and standard EO is the one where the computation is executed
layer-by-layer [6, 37]. The memory requirement of such a scheme would correspond to the largest
activation map in the architecture, except the output of 1x1 convolution layers which can be computed
on the fly. This approach mimics the memory requirement of existing platforms like TF-lite [11]
and is proposed as a standard benchmark for comparing resource-constrained inference methods [6].
Following this prior convention, we list the inference complexity for various architectures under the
compute-optimized columns in Table 1, unless the operation is easy to compute on the fly like 1x1

5

Table 2: Impact of various downsampling and pooling operators on the accuracy, inference complexity and
the model size of three base architectures: MobileNetV2 and DenseNet121 for ImageNet-10 dataset, and
MobileNetV2-0.35x for Visual Wake Word dataset. First block of the table represents the base network and a
modified network where the last average pooling layer in the network is replaced by RNNPoolLayer. Second
block represent modified networks where the image is passed through a convolution layer followed by various
downsampling methods to reduce the size of image by a factor of 4× 4. The last row represents the architecture
from the second block with RNNPoolLayer with an additional RNNPool replacing the last layer. Peak RAM
usage computed using standard convention of [6] is the same for all methods in the second block. Note that
RNNPoolLayer +Last layer RNNPool has accuracy similar to the base network while other methods like
ReNet are 2-3% less accurate.

Method
ImageNet-10 Visual Wake Words

MobileNetV2 DenseNet121 MobileNetV2-0.35×
Accuracy (%) MAdds Parameters Accuracy (%) MAdds Parameters Accuracy (%) MAdds Parameters

Base Network 94.20 0.300G 2.2M 95.40 2.83G 6.96M 90.20 53.2M 296K
Last layer RNNPool 95.00 0.334G 2.9M 95.40 3.05G 7.41M 91.14 53.4M 300K

Average Pooling 90.80 0.200G 2.0M 92.80 0.71G 5.59M 86.85 31.9M 255K
Max Pooling 92.80 0.200G 2.0M 93.40 0.71G 5.59M 86.92 31.9M 255K
Strided Convolution 93.00 0.258G 2.1M 93.80 1.33G 6.38M 88.08 39.2M 264K
ReNet 92.20 0.296G 2.3M 93.00 1.35G 6.41M 88.10 46.4M 277K
RNNPoolLayer 94.40 0.226G 2.0M 94.80 1.04G 5.60M 89.57 37.7M 255K
RNNPoolLayer +
Last layer RNNPool

95.60 0.260G 2.7M 95.00 1.26G 6.06M 89.65 37.9M 259K

convolution or patch-by-patch computation of RNNPool. Appendix E.2 provides more details about
these calculations.

The above scheme is easy to implement and allows an inference pipeline that is more modular and
easy to debug and could allow faster inference on neural network accelerators [23]. But, in principle,
one can design execution orders (EO) that do not re-compute any intermediate layers, but are still
not required to store entire activation maps, especially the largest ones. So, a rigorous quantification
of the memory requirement of a model (without any re-compute) needs to show that any valid
execution order requires a certain amount of working memory at some point in its execution, and also
demonstrate a valid EO with the same memory requirement as a matching upper bound. We achieve
this with the following proposition, whose proof and corollaries are in Appendix D.

Proposition 1 Consider an l-layer (l > 1) convolutional network with a final layer of size m× n.
Suppose the for each node in the output layer, the size of receptive field in intermediate layer q ∈ [l−1]
is (2kq+1)× (2kq+1), kq > 0 and that this layer has cq channels and stride 1. Any serial execution
order of this network that disallows re-computation requires at least 2

∑l−1
q=1 cqkq×min(m−1, n−1)

memory for nodes in the intermediate layers.

The above proposition shows that for a CNN with receptive field kq at the q-th layer, the memory
requirement scales linearly with the height/width of the activation map and with the number of layers.
As networks like MobileNetV2 or DenseNet have blocks with a significant number of convolution
layers and large receptive field, this proposition implies that it is not possible to significantly reduce
the memory requirement over the standard layer-by-layer approach. For example, our un-optimized
calculations for RNNPool architectures still give us 3− 4x reduction in peak RAM usage when com-
pared to the minimum RAM requirement of the corresponding base architecture (see Appendix E.1).
Further, similar optimization can be applied to RNNPool based architectures, so the relative reduction
in memory by RNNPool does not change significantly. The implications of the above proposition,
i.e., the peak memory of various networks without re-compute is calculated in Appendix E.1.

5 Evaluation of RNNPool on Vision Tasks

We present empirical evidence that RNNPool operator is compatible with popular CNN architectures
for vision tasks, and can push the envelope of compute/memory usage vs accuracy curve. Further, we
show that RNNPool combined with MobileNetV2 [37] generates accurate models for Visual wake
words and face detection problems that can be deployed on tiny Cortex-M4 microcontrollers. See
Appendix G for more details about model training and hyperparameters used for the experiments.

6

5.1 RNNPool for Image Classification

We first focus on ImageNet-10, a 10 class subset of ImageNet-1K [7] where the classes correspond
to the categories in CIFAR-10 [25]. We study this dataset because in several realistic tiny devices
scenario, like intrusion detection, we are interested in identifying the presence/absence of a few,
rather than 1000, classes of objects. The dataset is divided into 1300 images for training and 50 for
validation per class. More details and rationale about the dataset can be found in the Appendix A.

Table 2 compares RNNPoolLayer against other standard pooling operators as used in MobileNetV2
and DenseNet121 base networks (see Appendix F.1 for description of the architecture). It shows that
with the same memory usage, RNNPool is up to 4% more accurate than the standard pooling opera-
tors. While standard pooling operators are cheaper than RNNPool, the overall compute requirement
of RNNPool based architectures is similar to pooling based architectures. Furthermore, replacing
the last average pooling layer in the base network with RNNPool further increases accuracy, thus
demonstrating the flexibility of RNNPoolLayer. Table 2 also contrasts RNNPool with ReNet [42]
as a downsampling layer. We observe that RNNPool is a much better alternative for downsampling
layers in terms of accuracy (better by up to 2%), model size, and MAdds for the same amount of
working memory.

Next, we study the compatibility of RNNPool with different architectures. Table 1 shows that
RNNPool based architectures maintain the accuracy of base models while significantly decreasing
memory and compute requirement. See Section 4 and Appendix E for a discussion on the calculation
of memory and compute requirements of different models.

Table 3: Comparison of resources and accuracy with
MobileNets for ImageNet-1K.

Method Peak RAM Parameters MAdds Accuracy (%)

MobileNetV1 3.06MB 4.2M 569M 69.52
MobileNetV1-ReNet 0.77MB 4.2M 487M 66.90
MobileNetV1-RNNPool 0.77MB 4.1M 417M 69.39

MobileNetV2 2.29MB 3.4M 300M 71.81
MobileNetV2-ReNet 0.24MB 3.6M 296M 66.72
MobileNetV2-RNNPool 0.24MB 3.2M 226M 70.14

Finally, Table 3 presents results on the complete
ImageNet-1K [7] dataset with MobileNetV1
and MobileNetV2 as the base architectures.
ReNet and RNNPool based models are con-
structed in a manner similar to the models in
Table 1. See Table 10 for the complete specifi-
cation of the MobileNetV2+RNNPool model.
MobileNetV1+RNNPool model is constructed
similarly with h1 = h2 = 16. Consistent with

the results on ImageNet-10, RNNPool retains almost same accuracy as the base models while
decreasing memory usage significantly. Furthermore, RNNPool based models are also 3− 4% more
accurate than ReNet based models. In this work, we focus on state-of-the-art resource-constrained
models that do not require neural architecture search (NAS); we leave extension of RNNPool for
NAS based architectures like EfficientNets [41] for future work.

5.2 RNNPool for Visual Wake Words

85

86

87

88

89

90

91

0 10 20 30 40 50 60

85

86

87

88

89

90

91

0 100 200 300

250 KB
constraint

Peak Memory Usage (KB) MAdds (Millions)

A
cc

u
ra

cy
 (

%
)

A
cc

u
ra

cy
 (

%
)

60 million
MAdds/

inference

MobileNet-v2-RNNPool (0.35x)
MobileNet-v2 (0.35x)

(a) (b)

ProxylessNAS

Figure 3: Visual Wake Word: MobileNetV2-RNNPool requires
8× less RAM and 40% less compute than baselines. We cap the
number of parameters at ≤ 250K instead of the 290K allowed by
MobileNetV2 (0.35×). ProxylessNAS has 242K parameters.

The Visual Wake Words challenge [6]
presents a relevant use case for com-
puter vision on tiny microcontrollers.
It requires detecting the presence of a
human in the frame with very little re-
sources — no more than 250 KB peak
RAM usage and model size, and no
more than 60M MAdds/image. The
existing state-of-the-art method [6]
is MobileNetV2-0.35× with 8 chan-
nels for the first convolution and
320 channels for the last convolu-
tion layer. We use this as our base-
line and replace convolutions with an
RNNPoolLayer. After training a floating-point model with the best validation accuracy, we perform
per-channel quantization to obtain 8-bit integer weights and activations.

Table 2 compares the accuracy of the baseline and new architectures on this task. Replacing the last
average pool layer with RNNPool increases the accuracy by ≥ 1%. Inserting RNNPool both at the
beginning of the network and at the end provides a model whose accuracy is within 0.6% of the

7

Table 4: Comparison of memory requirement, no. of parameters and validation MAP of various Face Detection
architectures when applied to 640× 480 RGB images from the Wider Face dataset. RNNPool-Face-C achieves
higher accuracy than the baselines despite using 3× less RAM and 4.5× less MAdds. RNNPool-Face-Quant
enables deployment on Cortex-M4 class devices with 6-7% accuracy gains over the cheapest baselines.

Method Peak RAM Parameters MAdds MAP MAP for ≤ 3 faces

Easy Medium Hard Easy Medium Hard

EXTD 18.75 MB 0.07M 8.49G 0.90 0.88 0.82 0.93 0.93 0.91
LFFD 18.75 MB 2.15M 9.25G 0.91 0.88 0.77 0.83 0.83 0.82
RNNPool-Face-C 6.44 MB 1.52M 1.80G 0.92 0.89 0.70 0.95 0.94 0.92
FaceBoxes 1.76 MB 1.01M 2.84G 0.84 0.77 0.39 - - -
RNNPool-Face-B 1.76 MB 1.12M 1.18G 0.87 0.84 0.67 0.91 0.90 0.88

EagleEye 1.17 MB 0.23M 0.08G 0.74 0.70 0.44 0.79 0.78 0.75
RNNPool-Face-A 1.17 MB 0.06M 0.10G 0.77 0.75 0.53 0.81 0.79 0.77
RNNPool-Face-Quant 225 KB 0.07M 0.12G 0.80 0.78 0.53 0.84 0.83 0.81

baseline but with far smaller memory requirement (250→ 33.68 KB), model size, and MAdds. Peak
memory usage is calculated using the same convention as [6].

Further, we sweep across input image resolutions of {96, 128, 160, 192, 224} to trade-off between
accuracy and efficiency. Figure 3 shows that RNNPool models are significantly cheaper during
inference in terms of compute and memory while offering the same accuracy as the baselines. For
example, peak memory usage of MobileNetV2-0.35× with the lowest resolution images is ∼40 KB,
while our model requires only 34 KB RAM despite using the highest resolution image and providing
∼4% higher accuracy. Note that ProxylessNAS [14] was the winner of the Visual Wake Words
challenge. We report it’s accuracy on the final network provided by the authors. To be consistent, we
train the model only on the training data provided, instead of pretraining with ImageNet-1K used by
ProxylessNAS in the wake word challenge.

5.3 RNNPool for Face Detection

We experiment with multiple architectures we call RNNPool-Face-* for face detection suggested in
Section 4 and described in greater detail in Appendix F.2. We train and validate these architectures
with the WIDER FACE dataset [47]. Versions Quant, A, B, and C of the RNNPool-Face use
RNNPoolLayer of hidden dimensions 4, 4, 6 and 16, respectively.

Table 4 compares validation Mean Average Precision (MAP) for easy, medium, and hard subsets.
MAP is a standard metric for face detection and measures the mean area under the precision-recall
curve. We report MAP scores for baselines based on the official open-source code or pre-trained
models. For Eagle-Eye [52], we re-implemented the method as the source code was not available. For
EXTD [48], we report MAdds of the EXTD-32 version - the computationally cheapest. EXTD and
LFFD [18] are accurate but are computationally expensive. In contrast, RNNPool-Face-C achieves
better MAP in the easy and medium subsets despite using ∼ 4.5× less compute and ∼ 3× less RAM.

FaceBoxes [49] and Eagle-Eye reduce MAdds and peak memory usage by aggressively down-
sampling the image or by decreasing the number of channels leading to inaccurate models. In
contrast, RNNPool-Face-A and RNNPool-Face-B achieve significantly higher MAPs than these
methods while still ensuring smaller MAdds and peak RAM usage. We also compare MAP scores for
images that have≤ 3 faces, which is a more realistic face-detection setting for tiny devices. Here also,
RNNPool-Face-C is more accurate than all the baselines. Finally, RNNPool-Face-Quant uses byte
quantization to reduce the model size so it can be deployed on Cortex-M4 devices which typically
have ≤ 256 KB RAM, while still having > 0.80 MAP accuracy on images with ≤ 3 faces. See
Appendix I for a qualitative evaluation of our method against the baselines.

5.4 RNNPool based Model for ARM Cortex-M4 Microcontrollers

Finally, we develop a face detection model for conference/class room settings that can be deployed on
ARM Cortex-M4 class devices. To this end, we develop a more compact version of the face detection
model, RNNPool-Face-M4 (Table 15 in Appendix F.2), which has only 4 MBConv blocks. For

8

Table 5: Comparison of resources and MAP on the SCUT-HEAD dataset. RNNPool-Face-M4 can be effectively
deployed on an M4 device with <256 KB RAM in contrast to MobileNetV2-SSDLite low-cost detection model.

Model MAP Peak RAM MAdds Model Size

MobileNetV2-SSDLite 0.63 3.51 MB 540M 11.32 MB
RNNPool-Face-M4 0.58 188 KB 70M 160 KB

further reduction in MAdds and model-size, we train the RNNPool parameters to be sparse. That is,
W matrix of RNN1 is 50% non-zeros while the rest of the matrices in RNNPool are 30% non-zeros.

To not overshoot RAM for storing input image, we use 320×240×1 monochrome images for training
and testing. For evaluation, we first train on the WIDER FACE dataset and then fine-tune on the
SCUT-HEAD dataset [35] which consists of images in conference/class rooms. We then use the
SeeDot [12] compiler to quantize our model to 8 bits and generate C code for deployment. Table 5
compares the resource requirements and MAP on the SCUT-HEAD validation set (random 80%-20%
split) of RNNPool-Face-M4 against a similarly trained MobileNetV2-SSDLite model which is a
state-of-the-art architecture for low-cost detection.

Note that MobileNetV2-SSDLite cannot be deployed on a Cortex-M4 device even with 8-bit quanti-
zation as the peak RAM requirement is much more than the 256 KB limit of the device. RNNPool-
Face-M4 model processes a single image in 10.45 seconds on an ARM Cortex-M4 microcontroller
based STM32F439-M4 device clocked at 168 MHz.

6 Conclusions

In this paper, we proposed RNNPool, an efficient RNN-based pooling operator that can be used
to rapidly downsample activation map sizes thus significantly reduce inference-time memory and
compute requirements for a variety of standard CNNs. Due to syntax level similarity with pooling
layers, we can use RNNPool in most existing CNN based architectures. These replacements retain
accuracy for tasks like image classification and visual wake words. Our S3FD based RNNPool model
for face detection provided accurate models that can be deployed on tiny Cortex-M4 microcontrollers.
Finally, we showed with Proposition 1 that calculations of minimum memory requirement for
standard architectures can be made rigorous and demonstrate that despite such optimizations of
standard CNNs, RNNPool based models can be significantly more efficient in terms of inference-
time working memory. Using neural architecture search for RNNPool based models to further reduce
inference cost is an immediate and interesting direction.

Broader Impact

Pros: ML models are compute-intensive and are typically served on power-intensive cloud hardware
with a large resource footprint that adds to the global energy footprint. Our models can help reduce
this footprint by (a) allowing low power edge sensors with small memory to analyze images and
admit only interesting images for cloud inference, and (b) reducing the inference complexity of the
cloud models themselves. Further, edge-first inference enabled by our work can reduce reliance on
networks and also help provide privacy guarantees to end-user. Furthermore, vision models on tiny
edge devices enables accessible technologies, e.g., Seeing AI [33] for people with visual impairment.

Cons: While our intentions are to enable socially valuable use cases, this technology can enable
cheap, low-latency and low-power tracking systems that could enable intrusive surveillance by
malicious actors. Similarly, abuse of technology in certain wearables is also possible.

Again, we emphasize that it depends on the user to see the adaptation to either of these scenarios.

Acknowledgements

We are grateful to Shikhar Jaiswal and Aayan Kumar for their assistance in the deployment of
RNNPool models on Cortex-M4 devices. We also thank Sahil Bhatia, Ali Farhadi, Sachin Goyal,
Max Horton, Sham Kakade and Ajay Manchepalli for helpful discussions and feedback. Aditya
Kusupati did a part of this work during his research fellowship at Microsoft Research India.

9

References
[1] D. Acuna, H. Ling, A. Kar, and S. Fidler. Efficient interactive annotation of segmentation

datasets with polygon-rnn++. In The IEEE conference on Computer Vision and Pattern Recog-
nition, pages 859–868, 2018.

[2] S. Bell, C. Lawrence Zitnick, K. Bala, and R. Girshick. Inside-outside net: Detecting objects in
context with skip pooling and recurrent neural networks. In The IEEE Conference on Computer
Vision and Pattern Recognition, June 2016.

[3] H. Cai, L. Zhu, and S. Han. ProxylessNAS: Direct neural architecture search on target task and
hardware. arXiv preprint arXiv:1812.00332, 2018.

[4] K. Cho, B. Van Merriënboer, C. Gulcehre, D. Bahdanau, F. Bougares, H. Schwenk, and
Y. Bengio. Learning phrase representations using rnn encoder-decoder for statistical machine
translation. arXiv preprint arXiv:1406.1078, 2014.

[5] M. Cho and D. Brand. Mec: memory-efficient convolution for deep neural network. In
International Conference on Machine Learning, pages 815–824. JMLR. org, 2017.

[6] A. Chowdhery, P. Warden, J. Shlens, A. Howard, and R. Rhodes. Visual wake words dataset.
arXiv preprint arXiv:1906.05721, 2019.

[7] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. Imagenet: A large-scale hierarchical
image database. In The IEEE conference on Computer Vision and Pattern Recognition, pages
248–255. Ieee, 2009.

[8] D. K. Dennis, Y. Gaurkar, S. Gopinath, S. Goyal, C. Gupta, M. Jain, S. Jaiswal, A. Kumar,
A. Kusupati, C. Lovett, S. G. Patil, O. Saha, and H. V. Simhadri. EdgeML: Machine Learning
for resource-constrained edge devices. URL https://github.com/Microsoft/EdgeML.

[9] T. Gale, E. Elsen, and S. Hooker. The state of sparsity in deep neural networks. arXiv preprint
arXiv:1902.09574, 2019.

[10] Y. Gong, L. Wang, R. Guo, and S. Lazebnik. Multi-scale orderless pooling of deep convolutional
activation features. In European Conference on Computer Vision, pages 392–407. Springer,
2014.

[11] Google. ML for mobile and edge devices - tensorflow lite. URL https://www.tensorflow.
org/lite.

[12] S. Gopinath, N. Ghanathe, V. Seshadri, and R. Sharma. Compiling kb-sized machine learning
models to tiny iot devices. In ACM SIGPLAN Conference on Programming Language Design
and Implementation, pages 79–95, 2019.

[13] A. Gural and B. Murmann. Memory-optimal direct convolutions for maximizing classification
accuracy in embedded applications. In International Conference on Machine Learning, pages
2515–2524, 2019.

[14] S. Han, J. Lin, K. Wang, T. Wang, and Z. Wu. Solution to Visual Wakeup Words Challenge’19
(first place). URL https://github.com/mit-han-lab/VWW.

[15] K. He, X. Zhang, S. Ren, and J. Sun. Spatial pyramid pooling in deep convolutional networks
for visual recognition. The IEEE transactions on Pattern Analysis and Machine Intelligence, 37
(9):1904–1916, 2015.

[16] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. In The
IEEE conference on Computer Vision and Pattern Recognition, pages 770–778, 2016.

[17] Y. He, X. Zhang, and J. Sun. Channel pruning for accelerating very deep neural networks. In
The IEEE International Conference on Computer Vision, pages 1389–1397, 2017.

[18] Y. He, D. Xu, L. Wu, M. Jian, S. Xiang, and C. Pan. LFFD: A light and fast face detector for
edge devices. arXiv preprint arXiv:1904.10633, 2019.

[19] S. Hochreiter and J. Schmidhuber. Long short-term memory. Neural computation, 9(8):
1735–1780, 1997.

[20] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand, M. Andreetto, and
H. Adam. Mobilenets: Efficient convolutional neural networks for mobile vision applications.
arXiv preprint arXiv:1704.04861, 2017.

10

https://github.com/Microsoft/EdgeML
https://www.tensorflow.org/lite
https://www.tensorflow.org/lite
https://github.com/mit-han-lab/VWW

[21] G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. Weinberger. Densely connected convolutional
networks. In The IEEE conference on Computer Vision and Pattern Recognition, pages 4700–
4708, 2017.

[22] F. N. Iandola, S. Han, M. W. Moskewicz, K. Ashraf, W. J. Dally, and K. Keutzer. Squeezenet:
Alexnet-level accuracy with 50x fewer parameters and< 0.5 mb model size. arXiv preprint
arXiv:1602.07360, 2016.

[23] N. P. Jouppi, C. Young, N. Patil, D. Patterson, G. Agrawal, R. Bajwa, S. Bates, S. Bhatia,
N. Boden, A. Borchers, et al. In-datacenter performance analysis of a tensor processing unit. In
International Symposium on Computer Architecture, pages 1–12, 2017.

[24] D. Kim, J.-Y. Choi, and J.-E. Hong. Evaluating energy efficiency of internet of things software
architecture based on reusable software components. International Journal of Distributed
Sensor Networks, 13(1):1550147716682738, 2017.

[25] A. Krizhevsky, G. Hinton, et al. Learning multiple layers of features from tiny images. 2009.

[26] A. Kusupati, M. Singh, K. Bhatia, A. Kumar, P. Jain, and M. Varma. FastGRNN: A fast,
accurate, stable and tiny kilobyte sized gated recurrent neural network. In Advances in Neural
Information Processing Systems, pages 9017–9028, 2018.

[27] A. Kusupati, V. Ramanujan, R. Somani, M. Wortsman, P. Jain, S. Kakade, and A. Farhadi. Soft
threshold weight reparameterization for learnable sparsity. In International Conference on
Machine Learning, 2020.

[28] L. Lai, N. Suda, and V. Chandra. Cmsis-nn: Efficient neural network kernels for arm cortex-m
cpus. arXiv preprint arXiv:1801.06601, 2018.

[29] Y. LeCun, Y. Bengio, and G. Hinton. Deep learning. nature, 521(7553):436–444, 2015.

[30] T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan, P. Dollár, and C. L. Zitnick.
Microsoft coco: Common objects in context. In European Conference on Computer Vision,
pages 740–755. Springer, 2014.

[31] N. Liu, J. Han, and M.-H. Yang. Picanet: Learning pixel-wise contextual attention for saliency
detection. In The IEEE Conference on Computer Vision and Pattern Recognition, June 2018.

[32] A. Mead. Review of the development of multidimensional scaling methods. Journal of the
Royal Statistical Society: Series D (The Statistician), 41(1):27–39, 1992.

[33] Microsoft. Seeing AI. URL https://www.microsoft.com/en-us/ai/seeing-ai.

[34] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin,
N. Gimelshein, L. Antiga, et al. Pytorch: An imperative style, high-performance deep learning
library. In Advances in Neural Information Processing Systems, pages 8024–8035, 2019.

[35] D. Peng, Z. Sun, Z. Chen, Z. Cai, L. Xie, and L. Jin. Detecting heads using feature refine net
and cascaded multi-scale architecture. arXiv preprint arXiv:1803.09256, 2018.

[36] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A. Karpathy,
A. Khosla, M. Bernstein, et al. Imagenet large scale visual recognition challenge. International
Journal of Computer Vision, 115(3):211–252, 2015.

[37] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.-C. Chen. Mobilenetv2: Inverted
residuals and linear bottlenecks. In The IEEE conference on Computer Vision and Pattern
Recognition, pages 4510–4520, 2018.

[38] A. Shaw, D. Hunter, F. Iandola, and S. Sidhu. SqueezeNAS: Fast neural architecture search for
faster semantic segmentation. In ICCV Neural Architects Workshop, 2019.

[39] I. Sutskever, J. Martens, G. Dahl, and G. Hinton. On the importance of initialization and
momentum in deep learning. In International Conference on Machine Learning, pages 1139–
1147, 2013.

[40] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke, and
A. Rabinovich. Going deeper with convolutions. In The IEEE conference on Computer Vision
and Pattern Recognition, pages 1–9, 2015.

[41] M. Tan and Q. Le. EfficientNet: Rethinking model scaling for convolutional neural networks.
In International Conference on Machine Learning, pages 6105–6114, 2019.

11

https://www.microsoft.com/en-us/ai/seeing-ai

[42] F. Visin, K. Kastner, K. Cho, M. Matteucci, A. Courville, and Y. Bengio. Renet: A recurrent
neural network based alternative to convolutional networks. arXiv preprint arXiv:1505.00393,
2015.

[43] J. Wang, Y. Yang, J. Mao, Z. Huang, C. Huang, and W. Xu. CNN-RNN: A unified framework
for multi-label image classification. In The IEEE conference on Computer Vision and Pattern
Recognition, pages 2285–2294, 2016.

[44] K. Wang, Z. Liu, Y. Lin, J. Lin, and S. Han. Haq: Hardware-aware automated quantization with
mixed precision. In The IEEE conference on Computer Vision and Pattern Recognition, pages
8612–8620, 2019.

[45] W. Xie, A. Noble, and A. Zisserman. Layer recurrent neural networks. 2016.
[46] S. Xingjian, Z. Chen, H. Wang, D.-Y. Yeung, W.-K. Wong, and W.-c. Woo. Convolutional

LSTM network: A machine learning approach for precipitation nowcasting. In Advances in
Neural Information Processing Systems, pages 802–810, 2015.

[47] S. Yang, P. Luo, C.-C. Loy, and X. Tang. Wider face: A face detection benchmark. In The IEEE
conference on Computer Vision and Pattern Recognition, pages 5525–5533, 2016.

[48] Y. Yoo, D. Han, and S. Yun. EXTD: Extremely tiny face detector via iterative filter reuse. arXiv
preprint arXiv:1906.06579, 2019.

[49] S. Zhang, X. Zhu, Z. Lei, H. Shi, X. Wang, and S. Z. Li. Faceboxes: A CPU real-time face
detector with high accuracy. In The IEEE International Joint Conference on Biometrics, pages
1–9. IEEE, 2017.

[50] S. Zhang, X. Zhu, Z. Lei, H. Shi, X. Wang, and S. Z. Li. S3fd: Single shot scale-invariant face
detector. In The IEEE International Conference on Computer Vision, pages 192–201, 2017.

[51] Q. Zhao, S. Lyu, B. Zhang, and W. Feng. Multiactivation pooling method in convolutional
neural networks for image recognition. Wireless Communications and Mobile Computing, 2018,
2018.

[52] X. Zhao, X. Liang, C. Zhao, M. Tang, and J. Wang. Real-time multi-scale face detector on
embedded devices. Sensors, 19(9):2158, 2019.

12

A Dataset Information

A.1 ImageNet-10
Table 6: Classes in ImageNet-10 dataset.

Class no. ImageNet id Class name

1 n02690373 ‘airliner’
2 n04285008 ‘sports car’
3 n01560419 ‘bulbul’
4 n02124075 ‘Egyptian cat’
5 n02430045 ‘deer’
6 n02099601 ‘golden retriever’
7 n01641577 ‘bullfrog’
8 n03538406 ‘horse cart’
9 n03673027 ‘ocean liner’

10 n04467665 ‘trailer truck’

The ImageNet-10 is a subset of images from
ILSVRC 2012 ImageNet-1K dataset [36] of
1000 classes. All images corresponding to the
10 classes from CIFAR-10 as listed in Table 6
are sampled from the full dataset. The classes in
CIFAR-10 are: airplane, automobile, bird, cat,
deer, dog, frog, horse, ship and truck.

The class n02430045: ‘deer’ is not present in
the ImageNet-1K subset and was scraped from
the full ImageNet-22K database [7]. Each class
is divided into 1300 images for training and 50
images for validation.

Typical on-device models for real-world appli-
cations deal with limited classes (e.g. intruder detection). ImageNet-10 is a good proxy for this task
with medium resolution natural images.

A.2 Visual Wake Words

This is a binary classification dataset [6] dealing with the presence and absence of a person in the
image. The dataset is derived by re-labeling the images available in the MS COCO dataset [30] with
labels corresponding to whether a person is present or not. The training set has 115K images and the
validation set has 8K images. The labels are balanced between the two classes: 47% of the images in
the training dataset of 115k images are labeled as ‘person’.

A.3 WIDER FACE

This is a face detection dataset [47] with 32,203 images containing 393,703 labeled faces varying
in scale, pose, and occlusion. It is organized based on 61 event classes. Each event class has
40%/10%/50% data as training, validation, and testing sets. The images in the dataset are divided
into Easy, Medium, and Hard cases. The Hard case includes all the images of the dataset, and the
Easy and Medium cases are subsets of the Hard case. The hard case includes images with a large
number of faces or tiny faces along with the data from Easy and Medium cases.

A.4 SCUT HEAD

This is a head detection dataset [35]. We use PartB of this dataset for our experiments. PartB includes
2405 images with 43940 heads annotated. 1905 images of PartB are for training and 500 for testing.

B RNN as a spatial operator and comparison with ReNet

Since ReNet [42], there have been a few methods that have been built upon it to solve various vision
tasks. The fundamental difference, mathematically, between these approaches, and ours is how the
RNN is used to extract spatial information. In ReNet based methods, the RNN is used to find a
pixel-wise mapping from a voxel of the input activation map to that of the output map. However, in
our method, we are using RNNs to spatially summarize a big patch of the input activation map to a
1×1 voxel of the output activation map. Note that in ReNet the hidden states of every timestep of
RNN contribute to one voxel of the output, whereas in our case only the last hidden states of the
traversals are taken for both row/column-wise summarizations and bidirectional summarizations.

ReNet based approaches either insert RNN based layers in existing networks or replace a single
convolution layer (thus resulting in increasing computations). In ReNet, the RNNs are applied over
the whole input map, whereas RNNPool is applied patch by patch, which is semantically similar to a
pooling operator. Our usage of RNN for spatial information extraction is so powerful that we can
eliminate a large amount of RAM and compute heavy convolution layers and still preserve accuracy.

13

(2) Instances of 32 x 32 and 64 x

64 images with smoothed line

segments and background noise

(3) Instances of 64

x 64 images with

multiple shapes

(1) Instances of 32 x 32 images with

a line segment and background noise 40⁰

60⁰

80⁰

100⁰

120⁰

140⁰

160⁰

Permuted
images of
80⁰ class

0⁰

20⁰

Multi-Dimensional Scaling on Synthetic Lines Dataset

Permuted
images of
100⁰ class

Figure 4: (left) Examples from three multi-class and multi-label synthetic datasets used for probing
RNNPool. (right) A 2-dimensional Multi-Dimensional Scaling visualization of the 128 dimensional
output of RNNPool operator for the multi-class dataset (1). Some test images (plotted using black
and brown dots) were modified by randomly permuting rows and columns.

For ReNet to do the same, patches of size equal to the stride have to be flattened to construct an input
to the RNN, which makes it further inefficient in terms of compute and parameters and results in
loss of spatial dependencies. RNNPool results in a decrease in computations and parameters while
ReNet based methods will increase the same with respect to the baseline model. The comparisons in
Table 2 & 3 show that ReNet in fact results in a significant loss in accuracy too.

C Probing the Efficacy of RNNPool

C.1 Capturing Edges, Orientations and Shapes

To probe RNNPool’s efficacy at capturing edges, orientation, and shapes, we attempt to fit an
RNNPool operator to the following synthetic datasets of small 8-bit monochrome images with
background noise as shown in Figure 4. We conduct experiments on synthetic datasets to prove that
RNNPoolLayer can learn spatial representations.

1. A multi-class dataset consisting of images with one line segment of varying lengths and positions.
There are 9 classes corresponding to lines ranging from 0 to 160° at 20° intervals.

2. A multi-label dataset with images consisting of multizple line segments with varying lengths and
positions. There are 9 labels corresponding to lines with orientations of 0 to 160° at 20° intervals.

3. A multi-label dataset consisting of images with a subset of shapes (5 in total) – circle, triangle,
square, pentagon, and hexagon.

Table 7: Minimum required hyperparameter configura-
tions for synthetic experiments.

Data Image Size With Conv. Without Conv.

(1) 32× 32 h1 = 4, h2 = 16 h1 = 16, h2 = 32
(2) 32× 32 h1 = h2 = 8 h1 = h2 = 32
(2) 64× 64 h1 = 8, h2 = 16 h1 = h2 = 32
(3) 64× 64 h1 = 8 = h2 = 16 h1 = h2 = 32

We sweep over the h1, h2 parameters in pow-
ers of 2 for the smallest RNNPool operator that
can enable a single FC layer to classify or la-
bel the test set with 100% accuracy. We do so
with and without a preceding CNN layer of 8
convolutions of 3× 3 size and stride 2. Table 7
lists the least h1, h2 required for each task. We
observe that a single RNNPool module fits to
100% accuracy on all these datasets.

We conclude that the horizontal and the vertical passes of the RNN allows a single RNNPool operator
to capture the orientation of edges and simple shapes over patches of size up to 64 × 64. Further,
adding a single convolutional layer before the RNNPool layer makes the model much more parameter
efficient. In effect, the convolution layer detects gradients in a local 3× 3 patch, while the RNNPool
detects whether gradients across 3× 3 patches aggregate into a target shape.

Further, we use multi-dimensional scaling [32] to visualize the 4 · h2 = 128 dimensional output of
RNNPool operator on the multi-class dataset (1) in Figure 4 (left). Dataset (1) consists of various
lines in the image at a discrete set of angles, and the classification task is to detect the angle of

14

the line. Some images from the test set of classes 80° and 100° are multiplied with a permutation
matrix to randomly permute rows and columns. These resulting images are added to the original
test dataset and the output of the RNNPool is plotted in Figure 4 (right). The outputs for each class
form well-separated tight clusters indicating RNNPool indeed learns various orientations, while the
outputs for the permuted images are scattered across the plot indicating that it is not exploiting certain
gross aggregations in the data.

C.2 Comparing Performance with Pooling Operators

We now contrast the down-sampling power of RNNPool against standard pooling operators. That
is, we investigate if the pooling operators maintain accuracy for a downstream task even when the
pooling receptive field is large. To this end, we consider the image classification task with CIFAR-10
dataset [25] but the pooling operator is required to down-sample the input 32× 32 image to a 1× 1
voxel in one go i.e. both patch size and stride are 32. This is followed by a fully connected (FC)
layer. The number of output channels after pooling was ensured to be the same. For Max and Average
pooling models, a 1 × 1 convolution is used to ensure the same output dimension. For this task,
RNNPool achieves an accuracy of 70.63%, while the convolution layer, max pooling, and average
pooling’s accuracy are 53.13%, 20.04% and 26.53%, respectively. This demonstrates the modeling
power of the RNNPool operator over other pooling methods. Table 2 (Rows 2-5) reinforces the same
but on bigger image classification datasets.

Details. We use h1 = h2 = 32 for the RNNPool operator with patch size and stride as 32. For the
strided convolution we use a convolution layer of 4× h2 = 128 filters. For Max and Average pooling
first we pool down to 1× 1× 3 from input of 32× 32× 3 and then use a 1× 1 convolution of 128
filters. All the above have the same patch size and stride size and are followed by a fully connected
layer projection to 10 from 128.

D Lower bounds on space required for multi-layer networks

We now lower bound the memory requirements of computation of multi-layer convolutional networks
when recomputation is not permitted. Suppose we have an l-layer (l > 1) convolutional network.
Let Y denote the nodes in the final layer which form a grid of size m × n. Suppose that the size
of the receptive field of each node in Y in an intermediate layer l is (2k + 1) × (2k + 1), k > 0

and that yi,j ∈ Y depends on the activations of nodes x(l)i′j′ , i
′ ∈ {i − k, . . . , i, . . . i + k}, j′ ∈

{j − k, . . . , j, . . . j + k} in the intermediate layer l. Suppose further that the convolution operations
have stride 1 and are generic and not separable, i.e., can not in the general case be factored into
depth-wise separable operations. An execution of this network “disallows recomputation” if once
a node x in an intermediate layer (layers that are neither the input nor output of the network) is
computed, all nodes y ∈ Y that depend on x must be computed before x is evicted from memory.

Claim 1 Fix column j ∈ [n]. Suppose that nodes yi,j , i ∈ I ([m] have been completed at some
point in an execution order. Then at the same point in the execution order, at least 2k contiguous
activations x(l)i∗−k+1,j , x

(l)
i∗−k+2,j , . . . x

(l)
i∗+k,j for some i∗ ∈ [m] will need to be saved in memory

until another node from column j is computed.

Proof. Since I ([m], there exists index i∗ ∈ [m] \ I such that either i∗ + 1 ∈ I or i∗ − 1 ∈ I .
Suppose without loss of generality that i∗−1 ∈ I . Then, nodes x(l)i∗−k+1,j , x

(l)
i∗−k+2,j , . . . , x

(l)
i∗+k−1,j

must have been loaded into memory. However, yi∗,j also depends on these intermediate nodes, and
has not yet been computed. So these 2k intermediate nodes must be retained in memory, thus proving
the statement. The case where i∗ + 1 ∈ I is similar.

With this claim, we are ready to prove Proposition 1.

Proof of Proposition 1. Fix any execution order of the network, and label the nodes in the final
layer Y in the order they are evaluated: (p1, q1), (p2, q2), . . . , (pmn, qmn). That is yp1,q1 is evaluated
before yp2,q2 and so on. Let

It = ∪tτ=1pτ , Jt = ∪tτ=1qτ , and t∗ = min
t
{|It| = m or |Jt| = n}.

15

That is, once ypt∗ ,qt∗ is executed, either (a) at least one node in each row of the final layer has been
executed, or (b) at least one node in each column of the final layer has been executed, and at the
moment ypt∗−1,qt∗−1

is computed, there is an entire row, say r, and an entire column, say c, in the
final layer where no nodes have been executed.

Suppose that case (b) holds. Then, at step t∗ − 1, nodes in n − 1 columns [n] \ {c} have been
executed, and in each column, at least one row has not been executed. By Claim 1, each such column
would need to have 2kq activations at layer q in memory at this point of execution, and all these
nodes are unique (that the nodes required to be in memory by Claim 1 for different columns are
non-overlapping). Therefore, at least 2

∑l−1
q=1 cqkq×(n−1) memory is required to hold the necessary

nodes in each intermediate layer for this execution.

A similar analysis of case (a) yields a lower bound of 2
∑l−1
q=1 cqkq × (m− 1) from which the lemma

follows. �

If convolution operators have a stride larger than 1, then we can similarly state the following claim
based on the overlap between the nodes in an intermediate layer that are common dependencies
across two consecutive rows/columns of the output.

Claim 2 Fix column j ∈ [n]. Suppose that nodes yi,j , i ∈ I ([m] have been completed at
some point in an execution order. Suppose that the stride at layer q is sq. Restrict sq to 1 in
a layer with 1 × 1 convolutions, i.e., assume activations are not simply thrown away. Then at
the same point in the execution order, at least k′ = 2k + 1 − Πl

r=qsr contiguous activations

x
(l)
i∗−bk′/2c+1,j , x

(l)
i∗−k+2,j , . . . x

(l)
i∗+dk′/2e,j for some i∗ ∈ [m] will need to be saved in memory until

another node from column j is computed.

This allows us to restate Proposition 1 in networks where stride is greater than 1.

Proposition 2 Consider an l-layer (l > 1) convolutional network with a final layer of size m× n.
Suppose the for each node in the output layer, the size of receptive field in intermediate layer q ∈ [l−1]
is (2kq + 1)× (2kq + 1), kq > 0 and that this layer has cq channels and stride sq . Restrict sq to 1 in
a layer with 1× 1 convolutions. Suppose that k′q = 2kq + 1−Πl−1

r=qsr. Any serial execution order
of this network that disallows re-computation requires at least

∑l−1
q=1 cqk

′
q ×min((Πl−1

r=qsr)m −
1, (Πl−1

r=qsr)n− 1) memory for nodes in the intermediate layers.

Claim 3 The lower bound in Proposition 1 is matched by an execution order that computes the
network in a row or column-first order, whichever is smaller. That is, execute all the intermediate
nodes needed to compute the first row of the output, retain those intermediate nodes required for
the calculation of the second row of the output, compute the second row of output, and so on. Let
Sq = Πl

r=qsr, and restrict sq to 1 in a layer with 1× 1 convolutions. This schedule has a memory
requirement of

∑l−1
q=1 cq(2kq + 1− Sq)min(Qqm− 1 + 2kq, Sqn− 1 + 2kq) if we account for the

padding at either ends of the row in each intermediate layer, and

l−1∑
q=1

cq(2kq + 1− Sq)min(Sqm− 1, Sqn− 1),

if the padding is not counted.

Claim 4 Suppose we follow the row (or column)-wise execution order in Claim 3, and that each row
in the output depends on k0 layers at the input. Suppose that the input is required to be in memory
before the start of the execution and the output is required to be in memory at the end of the execution.
Let cin and cout denote the number of channels in the input and output. Let Sq = Πl

r=qsr, and let
k′0 = k0 − S1 be the number of rows/columns in the input layer that are common dependencies
between two consecutive rows/columns of the output. The memory requirement including those of
the input and output layers is

max{minnincin+k′0noutcout,moutnoutcout+k
′
0nincin}+

l−1∑
q=1

cq(2kq+1−Sq)min(Sqm−1, Sqn−1),

16

with padding added on the fly for convolutions at the boundaries of activation maps. This is obtained
by reclaiming the footprint of the input for the output one row at time (with a lag of k0 rows) once all
the nodes that depend on it are completed.

E Details about Compute and Peak RAM Calculation

In this section, we quantify the memory requirements of the networks analyzed in this paper.

E.1 Optimal memory requirements without recomputation

First, we analyze the minimum memory requirements and optimal execution orders of components –
inverted residual block, separable residual block, dense block, and inception block – assuming that
no re-computation is allowed. That is, we wish to find the minimum value, over all valid execution
ordersE of the block, of the maximum memory requirement of the execution order. Then, we analyze
the memory requirement of image classification architectures discussed in this paper.

E.1.1 Memory requirements of various block

We assume that the execution always starts with the input of the block in memory, and terminates
with output in memory. We denote that the size of input I is hin × win × C, where hin and win are
the height and the width of the activation and cin is the number of channels. Likewise, denote the
size of O to be hout × wout × cout. In what follows, suppose also that hin ≥ win and hout ≥ wout.
Otherwise we can flip rows and columns and meet the same constraints.

1. Inverted bottleneck residual block (a.k.a. MBConv, see Fig. 3b of [37]) : The first layer is a
point-wise convolution (C1) that expands the number of channels to cin × t where t is expansion
factor. Then there is a depth-wise separable 3 × 3 convolution (C2) with stride either 1 or 2,
followed by another point-wise convolution (C3) which reduces the number of output channels.
We can use the row-wise order suggested in Claim 4, which results in a schedule where the first
row of the output is generated, then the second row and so on. This schedule has a memory
footprint of max{hinwincin+(3−s)woutcout, houtwoutcout+(3−s)wincin}+(3−s)tcinwin,
where s is the stride of the 3× 3 convolution.

2. Residual Block (see Fig. 5(left) of [16]) : We consider a residual block consisting of two
convolution layers with 3× 3 kernels, of which the first has a stride s of 1 or 2, and the second
has stride 1. The we have wout = win/s and hout = hin/s. Using Claim 4, we can see that
the best case memory footprint is max{hinwincin + (5 − s)wincout/s, hinwincout/s2 + (5 −
s)wincin}+ 2wincout/s, assuming that the number of channels of intermediate layer is equal to
cout as is the norm here.

3. Inception block (see Fig. 2b of [40]): Denote the output of each of the 4 paths in the block by
O1, O2, O3 and O4. We consider the case where all convolutions are of stride 1. We can apply the
arguments of Section D simultaneously for all four paths with slight modification. We consider
a minimal set of contiguous rows at the start of the input – which would be first 5 row in the
referenced image as its the largest convolution size – and compute all channels in the first row
of the output of all four paths. We then drop the first row of input, materialize the second row
of output on all four paths and so on. If we denote by cout the number of output channels of
all four networks, then the memory requirement is max{hinwincin + 4woutcout, houtwoutcout +
4wincin}+ (2c2 + 4c3)win, where c2 and c3 are the number of intermediate channels in O2 and
O3 respectively.

4. Dense block (see Fig. 4 of URL) : At any point in the execution of a dense block, we need to
store the input to the dense block and outputs of all previous dense layers, since the last layer
needs all the activation maps concatenated as its input. The total activation maps being stored will
reach the peak just after the last dense layer. Therefore the peak memory requirement is the output
of the dense block.

E.1.2 Memory requirements of image classification networks

We calculate the lowest possible memory requirements of networks using calculations in the previous
subsection for individual blocks and the following methodology: find a partitioning of a multi-layer

17

https://towardsdatascience.com/understanding-and-visualizing-densenets-7f688092391a?gi=94436891b97

Table 8: Comparison of accuracy, compute and minimum memory requirement for inference with and without
RNNPoolLayer on ImageNet-10. The memory calculations reflect the application of Proposition 2 and Claim 4

.
Model Base RNNPool

Accuracy (%) Parameters Peak RAM MAdds Accuracy (%) Parameters Peak RAM MAdds

MobileNetV2 94.20 2.20M 0.84MB 0.30G 94.40 2.00M 0.24MB 0.23G
EfficientNet-B0 96.00 4.03M 0.84MB 0.39G 96.40 3.90M 0.24MB 0.33G
ResNet18 94.80 11.20M 0.81MB 1.80G 94.40 10.60M 0.38MB 0.95G
DenseNet121 95.40 6.96M 2.38MB 2.83G 94.80 5.60M 0.77MB 1.04G
GoogLeNet 96.00 9.96M 1.01MB 1.57G 95.60 9.35M 0.59MB 0.81G

network into disjoint contiguous sets of layers that minimizes the least memory requirement of the
most memory-intensive partition. Using this, we calculate the memory requirements of networks in
Table 1 and list the requirements in Table 8. We now discuss the specifics of each network, and in
particular, the partition of the layers of the network that requires the maximum memory (and thus
lower bonds the memory requirement of a network).

GoogLeNet has a initial convolution layer (C1) of stride 2, followed by a max pooling layer (P1),
another convolution layer (C2) of stride 2 and then a max pooling layer (P2). Output of P2 is of size
28 × 28 × 192. Applying Proposition 2 to the set of layers starting with the input image (I) and
output of P2 (O), the RAM required is 112 × (11-4) × 64 + 56 × (5-2) × 64 + 56 × (3-2) × 192
added to O and 7 rows of input, is lesser than the requirement for inception (3b). For the inception
(3b) block, the input is (28 × 28 × 256) and the output is of size 14 × 14 × 480. Therefore using
Proposition 2, the RAM required is 28 × (7-2) × 32 + 28 × (5-2) × 128 + 28 × (3-2) × 64 + 28 ×
(3-2)× 480 (the first three terms are intermediate activations of the inception block and have different
receptive fields), added to the input size (28 × 28 × 256) + 14 × (7-2) × 480, results in 1.01MB.

DenseNet121 has a 2-strided convolution layer (C1) in the beginning followed by a max pool of
stride 2 (P1) and then D1-the first Dense block which has 6 Dense layers. Each Dense layer has 1× 1
convolution with 128 output channels followed by a 3× 3 convolution with 128 input and 32 output
channels. The output of each Dense layer is concatenated to the input to form the input to the next
Dense layer which is why the 1× 1 convolution in each Dense layer has different input channels. D1
is followed by a 1× 1 convolution which reduces channels of activation map to half followed by P2,
another Max Pool layer. For determining the peak RAM required, we apply Proposition 2 to the set
of layers starting with the output of P1 (I) until the output of P2 (O), so that we can go from 56 × 56
× 64 to 28 × 28 × 128 directly bypassing 56 × 56 × 256 sized OD1. The receptive field of O on I
can be calculated to be 14×14. The RAM for intermediate activations will be 56 × (14-2) × 128 +
56 × (12-2) × 32 + 56 × (12-2) × 128 + 56 × (10-2) × 32 + . . . + 56 × (4-2) × 32. The total peak
RAM along with I (56× 56 × 64) + 28 × (14-2) × 128, which is 2.38MB.

ResNet18. A similar calculation as above can be done for ResNet18. The architecture consists of a
convolution layer (C1) of stride 2 followed by a max pool layer (P1), followed by residual blocks. In
this case, let us apply Proposition 2 to the block of layers starting with the input RGB image of size
224 × 224 × 3 (denoted I) until the output of P1 (denoted O). Between I and O we have 2 layers:
C1 and P1. Therefore the total RAM requirement will be 112 × (3-2) × 64 added to O (56 × 56 ×
64) + 224 × (11-4) × 3, which is 0.81MB.

MobileNetV2 has a convolution layer C1 of stride 2 followed by a MBConv block MB1 which has
stride 1. MB1 contributes to the peak memory (2.29MB). Denote by I the input RGB image of size
224 × 224 × 3 and denote by O the output of MB1. The receptive field of O on output of C1 is 3,
on output of first layer of MB1 is 3 and after the 1 for the rest two layers of MB1. Therefore, using
Proposition 1, the RAM required is 112 × (3-1) × 32 + 112 × (3-1) × 32 added to O (112 × 112 ×
16)) + 224 × (7-2) × 3, which is 0.84MB.

EfficientNet-B0 has exactly the same calculation as MobileNetV2 as the first convolution block and
first MBConv block are identical.

RNNPool Versions : Similar to GoogLeNet we can also reduce peak RAM of GoogLeNet-RNNPool.
Here inception (4e) is the bottleneck. Lets take I as the input to inception (3b)(14 × 14 × 528) and
O as the output of the pooling layer after inception (3b). Size of O is 7 × 7 × 832. Therefore using
Proposition 1, the RAM required is 14 × (7-2) × 32 + 14 × (5-2) × 160 + 14 × (3-2) × 128 + 14 ×
(3-2) × 832, added to input (14 × 14 × 528) + 7 × (7-2) × 832, resulting in 0.59MB.

18

The peak memory requirements of RNNPool versions of ResNet18, DenseNet121, MobileNetV2
and EfficientNet-B0 in Table 1 cannot be reduced further by better schedules as we replace the
most memory-intensive blocks and operate patch-by-patch, which is more local and granular that
row-by-row schedules used above.

E.2 Memory requirement (without recomputation) estimates according to prior conventions

In this subsection, we follow the scheduling convention of Chowdhery et al. [6] to estimate the
memory requirements of individual blocks and networks that use them. Note that the memory
requirements listed here can be higher than in Section E.1 as the schedules may not be optimal from
memory requirement perspective.

E.2.1 Memory requirements of individual blocks

1. Inverted bottleneck residual block (a.k.a. MBConv) : Give input I of size hin×win×C,
a pointwise convolution (C1) first expands the number of channels to C × t where t is
expansion factor. Then there is a depthwise separable 3× 3 convolution (C2) with stride
either 1 or 2, followed by another pointwise convolution (C3) which reduces the channel to
the number of output channels (O) associated with the MBConv block. To avoid storing the
large output (OC1) of C1 and bloating the memory, OC1 is constructed channel by channel,
so at first 1 filter of the C×t filters of C1 will be convolved with I , then this single 2D vector
will be convolved by C2. Since C2 is depthwise separable and input channels independently
contribute to an output channel, we again get a 2D map. This map is convolved with all
filters of C3 and we get an output of O number of channels. We keep doing this, going
one by one through each filter of C1 and adding to the output of the MBConv block of O
channels, to get the final output. Hence, the memory requirement is the size of input added
to that of the output of the MBConv block.

2. Residual Block : The memory requirement is the maximum of input and output maps of
the block. As the residual connection adds the input to the output values can be discarded
after being added to the output values being computed.

3. Inception block: Denote the input to the inception block I and the outputs of each of the 4
paths in the block O1, O2, O3 and O4. Since we can get rid of the input I after computing
the last output, we can order the computation in increasing order of the number of channels
in Oi. Therefore, the peak RAM while computing the full block will be the sum of input
added to the sum of the 3 smallest outputs.

4. Dense block: A dense block needs to store the input as well as outputs of all previous dense
layers since the last layer needs all the activation maps concatenated. The volume activation
maps stored will reach the peak just after the last dense layer. Therefore the peak RAM
usage is the size of the output of the dense block.

E.2.2 Memory requirements of image classification networks in Table 1

We now use the above results to compute the memory requirements of image classification networks,
assuming all computations are in 32-bit floating-point. We assume the layer-by-layer convention of
[6] for RAM computation. The peak memory requirement of both MobileNetV2 and EfficientNet-B0
is contributed by the first MBConv block in these architectures. The input map size to the block is
112× 112× 32 and the output map size is 112× 112× 16, adding up to a peak memory requirement
of 2.29MB.

The peak memory requirement of the RNNPool inserted versions is the MBConv block right after
the RNNPool replacement. The input size is 28 × 28 × 64 and output size is 14 × 14 × 64 for
MobileNetV2-RNNPool, adding up to 0.24MB. The input size is 28× 28× 64 and output size is
14× 14× 80 for EfficientNetB0-RNNPool, adding up to 0.25MB.

For ResNet18, DenseNet121, and GoogLeNet the maximum memory requirement is to host the
activation map just after the first convolution layer which is of size 112× 112× 64. For ResNet18-
RNNPool, the maximum requirement comes from the residual block just after RNNPool, i.e., the
first residual block out of the two of conv4_x. The input to this is of size 28 × 28 × 128 and the
output size is 14× 14× 256. The maximum of these two is 0.38MB. For DenseNet121-RNNPool,
the largest memory requirement comes from the output of D3 (see Figure 2), the size of which

19

14× 14× 1024 i.e. 0.77MB. For GoogLeNet, the peak requirement comes from the last inception
block on the spatial resolution of 14×14 — inception (4e). Here the size of the input is 14×14×528
and sizes of the 3 smallest outputs are 14× 14× 128, 14× 14× 128 and 14× 14× 256, totaling
0.78MB.

E.2.3 Memory requirement of face detection networks in Table 4 without recomputation

We use convention of considering the largest activation map to be the peak RAM requirement.
For EagleEye, FaceBoxes, EXTD and LFFD architectures, the largest activation map is the output
of the first convolution, their sizes being 320 × 240 × 4 (=1.17MB), 160 × 120 × 24 (=1.76MB),
320×240×64 (=18.75MB) and 320×240×64 (=18.75MB) respectively. For RNNPool-Face-A and
RNNPool-Face-B, the largest activation map is the output of the RNNPool, which is 160×120×16
(=1.17MB) and 160×120×24 (=1.76MB) respectively. For RNNPool-Face-C and RNNPool-Face-
Quant, peak memory requirement is contributed by the MBConv block right after the RNNPool. The
input size of this block for RNNPool-Face-C is 160× 120× 64 and output size is 160× 120× 24,
the total being 6.44MB. The input size of this block for RNNPool-Face-Quant is 80× 60× 32 and
output size is 80× 60× 16, the total being 224KB as we quantize to 1 byte unsigned integer.

E.3 Memory requirements of image classification networks in Table 1 with recomputation

As explained in Section E.2.2, the RAM calculations for RNNPool based models revealed that the
convolution block after RNNPoolLayer contributes to the peak RAM. Let’s denote this block in
both the base architecture and RNNPool-based version as ConvBlock-A. In the memory-optimized
scheme, we fix the peak RAM of the base model to be that of the convolution block whose RAM
usage is a bit more than that of the RNNPool version. We denote by ConvBlock-B the convolution
block that lies before ConvBlock-A, and such that there exists no block that lies between this block
and ConvBlock-A which has a RAM usage less than that of ConvBlock-A. Note that ConvBlock-B is
present only in the base model and not the RNNPool model. Since we fix the peak RAM, we have to
reconstruct an activation map (denoted by Activation-A) that comes before ConvBlock-B patch by
patch. Note that Activation-A need not necessarily be the activation map just before ConvBlock-B.
Activation-A is chosen as the earliest occurring activation map (nearer to the input image) which
ensures that there is no intermediate layer or block between it and ConvBlock-B which can contribute
to more RAM usage. We do construct Activation-A by loading a patch of the image (one at a time),
which is of the size of the receptive field of Activation-A w.r.t. the input image, and feed it forward to
get a 1 × 1 × channelActivation−A voxel of Activation-A. When we load the next patch we have
to re-compute some convolution and pooling outputs which come in the overlapping region of the
two consecutive patches. We keep doing this until we reconstruct Activation-A completely. The total
number of MAdds is the sum of the MAdds of the base network and the extra re-computations in
order to compute patch-by-patch.

F Architectures

F.1 Image Classification

F.1.1 RNNPoolLayer in the beginning replacing multiple blocks

Table 9: RNNPool settings for image classification.

Model Hidden Size Patch Size

MobileNetV2-RNNPool h1 = h2 = 16 6
EfficientNet-B0-RNNPool h1 = h2 = 16 6
ResNet18-RNNPool h1 = h2 = 32 8
DenseNet121-RNNPool h1 = h2 = 48 8
GoogLeNet-RNNPool h1 = h2 = 32 8
MobileNetV2-RNNPool (0.35×) h1 = h2 = 8 6

As discussed in Figure 2, we can use RNNPoolLayer in the beginning of the architecture to rapidly
downsample the image leading to smaller working RAM and compute requirement. Table 9 presents

20

the hidden state size and patch size used by RNNPoolLayer when applied to various models
discussed in Table 1. Note that the last row refers to the model used for Visual Wake Words
experiments (Figure 3).

Furthermore, Table 10 presents the exact architecture used by MobileNet-v2-RNNPool(0.35x) archi-
tecture applied to the Visual Wakeword problem (Section 5.2).

Table 10: MobileNetV2-RNNPool: RNNPool Block with patch-size 6×6 and hidden sizes h1 = h2 = 16 is
used. The rest of the layers are defined as in [37]. Each line denotes a sequence of layers, repeated n times. The
first layer of each bottleneck sequence has stride s and rest use stride 1. Expansion factor t is multiplied to the
input channels to change the width. The number of output classes is l.

Input Operator t c n s

2242 × 3 conv2d 3× 3 1 32 1 2
1122 × 32 RNNPool Block 1 64 1 4
282 × 64 bottleneck 6 64 4 2
142 × 64 bottleneck 6 96 3 1
142 × 96 bottleneck 6 160 3 2
72 × 160 bottleneck 6 320 1 1
72 × 320 conv2d 1× 1 1 1280 1 1
72 × 1280 avgpool 7× 7 1 - 1 1

1× 1× 1280 conv2d 1× 1 1 l - 1

F.1.2 RNNPoolLayer replacing Average Pooling at the end

Typical image classification models use average pooling before the final feed-forward layer to produce
the class probabilities. As RNNPoolLayer is syntactically equivalent to standard pooling layers, we
can use it to perform the pooling in the penultimate layer, replacing the average pool layer. To this
end, we use RNNPool operator with h1 = h2 = l/4 where l is the number of channels in the last
activation map before the average pooling layer. Such a replacement does not significantly contribute
to the number of parameters and MAdds. In Table 2, Row 2 refers to such a replacement in the
base MobilnetV2, DenseNet121, and MobilenetV2-0.35x models, while Row 7 refers to similar
replacement in the corresponding RNNPool models. In Figure 3, all RNNPool based architectures
use RNNPool both in the beginning layer and in the penultimate layer of the network.

F.1.3 RNNPoolLayer replacing intermediate Pooling layers

These experiments have been tried on DenseNet121 as the base model (Section-4), where we
are replacing single max-pooling layers appearing in intermediate positions in the network with
RNNPool. Given rin × cin × kin size input activation map to the pooling layer, the hidden sizes for
RNNPool is taken as h1 = h2 = kin/4, patch size as 4 and stride as 2. Note that we also further
drop dense layers (1× 1 convolution followed by 3× 3 convolution) in D3 and D4. The number of
channels in the output of any dense block is the sum of the number of input channels and output of
each dense layer. Hence, reducing the number of dense layers reduces the number of channels of the
output activation maps of these dense blocks and hence the input to the pooling layer. However, for
the RNNPool the same strategy of h1 = h2 = kin/4 is followed where kin is lesser now.

F.2 Face Detection

Our detection network builds upon the backbone structure of S3FD [50]. Each RNNPool-Face model
is created by placing RNNPool Block directly after the input image or after a strided convolution
(RNNPool-Face-Quant). Following the RNNPoolLayer, we apply standard S3FD architecture for
detection. Detection layers are placed at strides of 4, 8, 16, 32, 64, and 128, for square anchor boxes
of sizes 16, 32, 64, 128, 256, and 512 as in S3FD.

Following S3FD architecture, we fix the required receptive field size of each of the detection layers,
which is then used to compute the number of MBConv Blocks or convolution layers after RNNPool
and before each detection layer. We also use S3FD’s anchor matching strategy and the max-out
background label technique.

21

Table 11: The architecture of RNNPool-Face-C
Input Operator t c n s

640× 480× 3 RNNPoolLayer 1 64 1 4
160× 120× 64 bottleneck 6 24 2 1
160× 120× 24 bottleneck 6 32 3 2
80× 60× 32 bottleneck 6 64 4 2
40× 30× 64 bottleneck 6 96 3 2
20× 15× 96 bottleneck 6 160 2 2
10× 7× 160 bottleneck 6 320 1 2

Images are trained on 640 × 640 images. A multi-task loss is used where cross-entropy loss is used
for classification of anchor box and smooth L1 loss is used as regression loss for bounding box
coordinate offsets. We use multi-scale testing and Non-Maximal Suppression during inference to
determine final bounding boxes.

Table 11 contains the architecture of RNNPool-Face-C. There is a detection layer after every
bottleneck stack. The detection layer contains two 3 × 3 constitutional kernels which predict the
class probability (2 outputs per pixel) and bounding box offsets(4 outputs per pixel). The convention
followed in the table below is the same as in Table 10. t is the expansion coefficient, c is the number
of output channels, n is the number of repetitions of the MBConv1 layer and s is the stride associated
with the first of those stack of layers. RNNPool’s hidden state sizes are fixed to be: h1 = h2 = 16.

Table 12: The architecture of RNNPool-Face-B

Input Operator t c n s

640× 480× 3 RNNPoolLayer 1 24 1 4
160× 120× 24 conv2d 3× 3 1 24 4 1
160× 120× 24 conv2d 3× 3 1 96 1 2
80× 60× 96 conv2d 1× 1 1 32 1 1
80× 60× 32 bottleneck 6 32 3 1
80× 60× 32 bottleneck 6 64 3 2
40× 30× 64 bottleneck 6 128 2 2
20× 15× 128 bottleneck 6 160 1 2
10× 7× 160 bottleneck 6 320 1 2

Architecture for RNNPool-Face-B is shown in Table 12. The detection heads are after the second
row of the table and then after each stack of bottleneck layers. RNNPool’s hidden state sizes are
fixed to be: h1 = h2 = 6.

Architecture for RNNPool-Face-A is shown in Table 13. The detection heads are after the second
row of the table and then after each stack of bottleneck layers. RNNPool’s hidden state sizes are
fixed to be: h1 = h2 = 16. Depthwise+Pointwise refers to a depthwise separable 3× 3 convolution
followed by a pointwise 1× 1 convolution.

The architecture for RNNPool-Face-Quant is shown in Table 14. The detection heads are after the
second row of the table and then after each stack of bottleneck layers. The first detection head has
a strided 3× 3 convolution to reach a total stride of 4 (following S3FD). RNNPool’s hidden state
sizes are fixed to be: h1 = h2 = 4.

1We use the terms ’bottleneck’, MBConv, and inverted residual interchangeably, they refer to the same block.

Table 13: The architecture of RNNPool-Face-A
Input Operator t c n s

640× 480× 3 RNNPoolLayer 1 16 1 4
160× 120× 16 Depthwise+Pointwise 1 16 4 1
160× 120× 16 Depthwise+Pointwise 1 16 1 2
80× 60× 16 bottleneck 1 16 3 1
80× 60× 16 bottleneck 1 24 3 2
40× 30× 24 bottleneck 1 32 2 2
20× 15× 32 bottleneck 2 128 1 2
10× 7× 128 bottleneck 2 160 1 2

22

Table 14: The architecture of RNNPool-Face-Quant
Input Operator t c n s

640× 480× 3 conv2d 3× 3 1 4 1 2
320× 240× 4 conv2d 3× 3 1 4 1 1
320× 240× 4 RNNPoolLayer 1 32 1 4
80× 60× 32 bottleneck 2 16 4 1
80× 60× 16 bottleneck 2 24 4 2
40× 30× 24 bottleneck 2 32 2 2
20× 15× 32 bottleneck 2 64 1 2
10× 7× 64 bottleneck 2 96 1 2

Table 15: The architecture of RNNPool-Face-M4
Input Operator t c n s

320× 240× 1 conv2d 3× 3 1 4 1 2
160× 120× 4 RNNPoolLayer 1 64 1 4
40× 30× 64 bottleneck 2 32 1 1
40× 30× 32 bottleneck 2 32 1 1
40× 30× 32 bottleneck 2 64 1 2
20× 15× 64 bottleneck 2 64 1 1

Table 15 shows the RNNPool-Face-M4 architecture for our cheapest model deployed on a M4 device.
The model has 4 detection layers after each MBConv Block. RNNPool’s hidden state sizes are fixed
to be: h1 = h2 = 16.

The RNNPool models decrease MAdds drastically while maintaining performance. Figure 5, shows
the difference we are making. When restricted to the methods with <2G MAdds requirement, our
model attains even better MAP (for easy and medium dataset) than the state-of-the-art EXTD and
LFFD architectures (which need about 10G MAdds per inference.

0.3

0.4

0.5

0.6

0.7

0.8

0 2 4 6 8 10
M

A
P

HARD

EagleEye

FaceBoxes

EXTD

LFFD

0.65

0.7

0.75

0.8

0.85

0.9

0 2 4 6 8 10

M
A

P

MEDIUM

EagleEye

FaceBoxes

EXTD LFFD

0.7

0.75

0.8

0.85

0.9

0.95

0 2 4 6 8 10

M
A

P

EASY

EagleEye

FaceBoxes

EXTD

LFFD

RNNPool Models
Prior Art

(a) (b) (c)

RNNPool-A

RNNPool-B

RNNPool-C

RNNPool-A

RNNPool-B

RNNPool-C

RNNPool-A

RNNPool-B

RNNPool-C

MAdds (Billions)MAdds (Billions)MAdds (Billions)

Figure 5: WIDER Face Dataset: MAdds vs MAP of various methods including RNNPool +S3FD.

G Hyperparameters

Models are trained in PyTorch [34] using SGD with momentum optimizer [39] with weight decay
4 × 10−5 and momentum 0.9. We do data-parallel training with 4 NVIDIA P40 GPUs and use a
batch size of 256 for classification and 32 for face detection. We use a cosine learning rate schedule
with an initial learning rate of 0.05 for classification tasks, and 0.01 with 5 warmup epochs for face
detection tasks. All convolution layers use learnable batch normalization. We use the EdgeML [8]
implementation of FastGRNN. All ImageNet-10 and face detection experiments were trained for 300
epochs. Both Visual Wake Words and ImageNet-1K experiments were run for 150 epochs. Best top-1
validation accuracy is reported in all the classification datasets and test MAP was reported for face
detection.

We use FastGRNN as both the RNNs in RNNPool. We usually use the same hidden dimension
for both the RNNs. We fix ζ as 1 and ν as 0 for all models, for stability, and use piecewise linear
non-linearities quantTanh and quantSigmoid for the Visual Wake Word models, so we can quantize it
without loss of information.

Various image augmentations were used for training each network. For the ImageNet experiments, the
training images were cropped to a random size of 0.08 to 1.0 times the original size and reshaped to a
random aspect ratio of 3/4 to 4/3. This was then resized to 224 × 224. This image was further flipped
horizontally randomly and then normalized by the mean and standard deviation. For the validation
set, we resize the input image to 256 × 256 and then take a center crop of 224 × 224. For the Visual
Wake Word experiment, we follow a similar process except during training we crop the input image
first to a random size of 0.2 to 1.0 times the original size. For varying resolutions from 96 to 224 as
reported in Figure 3, the ratio of resizing resolution of the input image and center crop size is kept the
same during validation. All other augmentations are kept the same with output size changed from 96
to 224. For Face Detection experiments we use augmentations like in S3FD [50]. This includes color

23

distortion, random cropping: specifically zooming in to smaller faces to get larger faces to train on,
and horizontal flipping after cropping to 640 × 640. Note that the same augmentation strategies were
used for the baseline models also for a fair comparison.

H RNNPool Ablation

In this section, we first discuss the changes in accuracy, peak RAM, MAdds, and the number of
parameters on varying hyperparameters of RNNPool like patch size, hidden dimensions, and stride.
We also compare the same for multiple layers of RNNPool. We use MobileNetV2 as the base
network and the dataset is ImageNet-10. Note that the first row refers to the MobileNetV2-RNNPool
architecture in Table 10, and the other rows (b)-(e) of Table 16 are variations on it. Table 16 (f) and
(g) have another 4 MBConv blocks replaced in the MobileNetV2-RNNPool architecture (Row 3
of Table 10). (f) uses a single RNNPool to do this replacement whereas (g) uses two consecutive
RNNPool Blocks. All variations have ∼2M parameters (even (g) which has 2 RNNPool layers has
a very minimal model size overhead). This suggests that a finer hyperparameter and architecture
search could lead to a better trade-off between accuracy and compute requirements.

Table 16: Comparison of accuracy, peak RAM and MAdds for variations in hidden dimensions, patch size
and stride in RNNPool for MobileNetV2 and on ImageNet-10 dataset. Parameters are same as the base if not
mentioned. (f) and (g) are further replacements in MobileNetV2-RNNPool (Row 3 of Table 10).

Hyperparameters Accuracy (%) Peak RAM MAdds

(a) Reported (Patch Size = 6; h1 = h2 = 16, Stride = 4) 94.4 0.24MB 0.23G
(b) Patch size = 8 94.0 0.24MB 0.24G
(c) Patch size = 4 93.2 0.24MB 0.22G
(d) h1 = h2 = 8 92.8 0.14MB 0.21G
(e) h1 = h2 = 32 95.0 0.43MB 0.29G
(f) Stride = 8; Patch Size = 12 94.0 0.14MB 0.17G
(g) Stride = 4; Patch Size = 6 and Stride = 2; Patch Size = 4 93.2 0.19MB 0.17G

In Table 18, we ablate over the choice of RNN cell (LSTM, GRU and FastGRNN) in RNNPool
for the MobileNetV2-RNNPool model (Table 10) on the ImageNet-10 dataset. We show that the
choice of FastGRNN results in significantly lower MAdds than LSTM or GRU while having about
1% higher accuracy. Finally, Table 17 has the training curve for the MobileNetV2-RNNPool on
ImagetNet-10 showing that training with RNNPool is not harder than the base models.

0

10

20

30

40

50

60

70

80

90

100

1 51 101 151 201 251

Training

Testing

Table 17: Training curve of MobileNetV2-
RNNPool on ImageNet-10.

Table 18: Ablation over RNN cell in RNNPool for
MobileNetV2-RNNPool on ImageNet-10.

RNN cell Parameters MAdds Accuracy (%)

LSTM 2.0M 266M 93.4
GRU 2.0M 246M 93.0
FastGRNN 2.0M 226M 94.4

I Face Detection Qualitative Results

Figures 6 and 7 show the qualitative results where RNNPool based models outperform the current
state-of-the-art real-time face detection models.

24

EagleEye RNNPool-Face-Quant

Figure 6: Comparison of performance on test images
with Eagle-Eye and RNNPool-Face-Quant. The confi-
dence threshold is set to 0.6 for both models. EagleEye
misses faces when there is makeup, occlusion, blurriness
and in grainy pictures, while our method detects them.
However, in the case of some hard faces, RNNPool-Face-
Quant misses a few of them or does not draw a bounding
box over the full face.

EXTD_32 RNNPool-Face-C

Figure 7: Comparison of performance on test images
with EXTD_32 and RNNPool-Face-C. The confidence
threshold is set to 0.6 for both models. The EXTD model
has more false positives and misses more faces. In the
first image, EXTD makes a faulty prediction at the top
right. In the second image, EXTD mistakes regions in
leaves for faces, while our model detects just the two
correct faces. In the next image, both the models have
some wrong detections, but the EXTD model detects a
large bounding box that is a false positive. In the next
image EXTD misses a face with an unnatural pose that
our model detects. However, our model detects a face
within a face which in general can be removed easily. In
the next image (last row above), both the models detect
the two faces, which weren’t detected by the models on
the left. Our model detects a slightly better bounding
box than EXTD.

25

	Introduction
	Related Work
	What is RNNPool?
	The RNNPool Operator and the RNNPoolLayer
	Probing the Efficacy of RNNPool

	How to use the RNNPoolLayer?
	Evaluation of RNNPool on Vision Tasks
	RNNPool for Image Classification
	RNNPool for Visual Wake Words
	RNNPool for Face Detection
	RNNPool based Model for ARM Cortex-M4 Microcontrollers

	Conclusions
	Dataset Information
	ImageNet-10
	Visual Wake Words
	WIDER FACE
	SCUT HEAD

	RNN as a spatial operator and comparison with ReNet
	Probing the Efficacy of RNNPool
	Capturing Edges, Orientations and Shapes
	Comparing Performance with Pooling Operators

	Lower bounds on space required for multi-layer networks
	Details about Compute and Peak RAM Calculation
	Optimal memory requirements without recomputation
	Memory requirements of various block
	Memory requirements of image classification networks

	Memory requirement (without recomputation) estimates according to prior conventions
	Memory requirements of individual blocks
	Memory requirements of image classification networks in Table 1
	Memory requirement of face detection networks in Table 4 without recomputation

	Memory requirements of image classification networks in Table 1 with recomputation

	Architectures
	Image Classification
	RNNPoolLayer in the beginning replacing multiple blocks
	RNNPoolLayer replacing Average Pooling at the end
	RNNPoolLayer replacing intermediate Pooling layers

	Face Detection

	Hyperparameters
	RNNPool Ablation
	Face Detection Qualitative Results

