
[

Supplementary - Parabel: Partitioned Label Trees for Extreme
Classification with Application to Dynamic Search Advertising

Yashoteja Prabhu
∗

yashoteja.prabhu@gmail.com

Anil Kag
†

anilkagak2@gmail.com

Shrutendra Harsola
‡

shharsol@microsoft.com

Rahul Agrawal
‡

Rahul.agrawal@microsoft.com

Manik Varma
∗†

manik@microsoft.com

]

1 ALGORITHMS
Algorithm 1 presents the pseudocode for Parabel training by assuming 1-vs-All classifiers for both the child traversal distributions in the

internal nodes and the label sampling distributions in the leaf nodes. Note, however, that in general any probabilistic classifiers can be used

as alternatives to 1-vs-All classifiers. Algorithm 3 presents the pseudocode for Parabel prediction algorithm. Algorithm 2 describes the label

clustering algorithm used for learning the balanced binary label trees.

Algorithm 1 Parabel Training

Input: (a) Training data {xi ,yi }Ni=1
; (b) number of trees T ; (c) maximum labels in a leafM ; (c) cost co-efficient of linear classifiers C

Output: Trained trees T1, ..,TT

for t ∈ {1, ..,T } do
Tt ← train tree({xi ,yi }Ni=1

,M ,C)
end for
return {T1, ..,Tt }

procedure train tree({xi ,yi }Ni=1
,M ,C)

v′l ←
∑L
l=1

yilxi ∀l ∈ {1, ..,L} # L is number of labels

vl =
v′l
∥v′l ∥2

∀l ∈ {1, ..,L} # Label representations are formed

T ← Hierarchical Spherical Balanced k = 2-means({vl }Ll=1
,M)

I ← T .I; L ← T .L; Y ← T .Y ; C ← T .C # I, L, Yn , Cn are the internal nodes, leaf nodes, labels in node n and children of node n in tree T

for n ∈ I do # Iterate over internal nodes

Xn ← {i :

∑
l ∈Yn yil > 0} # Xn is set of data points active in node n, yil is the l th element of yi

for n̂ ∈ Cn do # Iterate over children of node n

Xn̂ ← {i :

∑
l ∈Yn̂ yil > 0}

for i ∈ Xn do
zi ← 1[i ∈ Xn̂] # 1 is indicator function which takes values in {0.1}

end for
T .wnn̂ ← arg minw ∥w∥2 +C

∑
i ∈Xn F ((2zi − 1)w⊤xi) # F can be log loss or squared hinge loss etc.

end for
end for
for n ∈ L do # Iterate over leaf nodes

Xn ← {i :

∑
l ∈Yn yil > 0}

for l ∈ Yn do
T .wnl ← arg minw ∥w∥2 +C

∑
i ∈Xn F ((2yil − 1)w⊤xi) # Learn 1-vs-All for labels in leaf node n

end for
end for
T .depth← ⌈log

2
(LM)⌉

return T
end procedure

∗
Indian Institute of Technology Delhi

†
Microsoft Research India

‡
Microsoft Bing Ads

2 THEOREMS AND PROOFS
2.1 Spherical Balanced k = 2-Means Clustering
Label partitioning in Parabel involves solving the following Spherical Balanced k = 2-Means Clustering problem

max

µ±∈RD ,α ∈{−1,+1}L

1

L

L∑
l=1

(
1 + αl

2

µ⊤+vl +
1 − αl

2

µ⊤−vl
)

(1)

s. t. ∥µ±∥2 = 1, −1 ≤

L∑
l=1

αl ≤ 1

where vl ,αl are respectively the feature vector and the cluster assignment variable for the lth label; µ± are the means for the positive (left)

and the negative (right) clusters.

The optimization problem in (1) is NP-hard [1]. Parabel therefore employs the following alternating minimization algorithm which

converges to a local optimum. The algorithm is initialized by sampling µ± from {v1,v2, · · · ,vL } uniformly at random without replacement.

The following two steps are then repeated in each iteration of the algorithm until convergence. In the first step of each iteration, (1) is

maximized while keeping µ± fixed. It is straightforward to show that the optimal solution is given by α∗l = sign

(
rank

(
(µ+ − µ−)⊤vl

)
− L+1

2

)
with sign(0) being resolved to +1 or −1 depending on whether the label is closer to the positive or negative cluster respectively. In the

second step, each αl is fixed and (1) is maximized with respect to µ± to get µ∗± = µ′±/∥µ
′
±∥2 where µ′± =

∑
l :αl=±1

vl . The following theorems

show that the closed form solutions obtained for these two steps are in fact the global maxima for their respective subproblems.

Theorem 2.1. In (1), if µ± are kept fixed and the objective is optimized with respect to α , then the solution α∗l = sign
(
rank
(
(µ+ − µ−)⊤vl

)
−

L+1

2

)
when rank

(
(µ+ − µ−)⊤vl

)
, L+1

2
, and α∗l = sign

(
(µ+ − µ−)⊤vl) when rank

(
(µ+ − µ−)⊤vl

)
= L+1

2
is a global maximum.

Proof. Let us prove by contradiction. First, we can see that the purported solution

α∗l = sign

(
rank

(
(µ+ − µ−)

⊤vl
)
−
L + 1

2

)
if rank

(
(µ+ − µ−)

⊤vl
)
,

L + 1

2

(2)

α∗l = sign

(
(µ+ − µ−)

⊤vl) if rank

(
(µ+ − µ−)

⊤vl
)
=

L + 1

2

(3)

obeys the balance constraint on α and hence is a feasible solution to

max

α ∈{−1,+1}L
F (α) =

1

L

L∑
l=1

(
1 + αl

2

µ⊤+vl +
1 − αl

2

µ⊤−vl
)

(4)

s. t. − 1 ≤

L∑
l=1

αl ≤ 1

Now, if the solution (2) is not a global maximum of the objective (4), then there exists a true global maximum α ∈ {−1,+1}L such that

α , α ∗, F (α) > F (α ∗) and α has the minimum hamming distance
∥α−α ∗ ∥1

2
among all the globally maximal solutions.

Case 1: ∥α−α
∗ ∥1

2
= 1

In this case, L is an odd number and α and α ∗ differ in exactly one place, say l ∈ {1, · · · ,L}. Then l is definitely allotted to the odd and bigger

sized cluster in α because otherwise the difference between the cluster sizes would be more than 1 thus disobeying the balance constraint.

Moreover, l is closer to its own cluster (in terms of cosine similarity) than the other one, otherwise we could shift l to other cluster to get

α ∗ without reducing the objective, which leads to contradiction. Without loss of generality, let’s assume that l is allotted to the positive

cluster. Then l is ranked strictly after
L+1

2
in α ∗ in terms of (µ+ − µ−)⊤vl . In this case, exchanging the label at

L+1

2
position (which belongs

to negative cluster in α) and the label l would give a higher valued feasible solution leading to contradiction. A similar argument holds if l
were to belong to negative cluster in α . Therefore no such global maximum exists whose value is greater than F (α ∗) and whose hamming

distance is 1.

Case 2: ∥α−α
∗ ∥1

2
> 1

In this case, there will be atleast one pair of labels l1 and l2 which are in different clusters in α and whose assignments are exchanged in α ∗

as compared to α . W.l.o.g let l1 be allotted to negative cluster and l2 to positive cluster in α . Then l1 will be allotted to positive cluster and

l2 to negative cluster in α ∗. Consequently,

(µ+ − µ−)
⊤vl1 ≥ (µ+ − µ−)

⊤vl2 (5)

=⇒ µ⊤+vl1 + µ
⊤
−vl2 ≥ µ⊤+vl2 + µ

⊤
−vl1 (6)

2

Algorithm 2 Hierarchical Spherical Balanced k = 2-Means

Input: (a) Label feature vectors {vl }Ll=1
; (b) maximum labels in a leafM

Output: Label tree T
T ← new tree

n0 ← new node # n0 is the root node

Yn0
← {1, · · · ,L} # Root node contains all labels

I ← {n0} # Set of internal nodes

L ← ϕ # Set of leaf nodes

Cn0
← ϕ # Children of node n0

Pn0
← ϕ # Parent of node n0

grow-node-recursive(I,L,Y,C,P,n0, {vl }Ll=1
,M)

T .I ← I; T .L ← L; T .C ← C; T .P ← P

return T

procedure grow-node-recursive(I,L,Y,C,P,n, {vl }Ll=1
,M)

if |Yn | ≤ M then # n contains less thanM labels, make n a leaf

Cn ← ϕ # n has no children nodes

L ← L ∪ {n}
else # Split node and grow child nodes recursively

n+ ← new node # n+ is left child node

n− ← new node # n− is right child node

Yn+ ,Yn− ← Spherical Balanced k = 2-Means(Yn , {vl }Ll=1
)

Cn ← {n+,n−} # Cn are children of n

Pn+ ← n # Pn+ is parent of n+

Pn− ← n
I ← I ∪ {n+,n−}
grow-node-recursive(I,L,Y,C,P,n+, {vl }Ll=1

,M)

grow-node-recursive(I,L,Y,C,P,n−, {vl }Ll=1
,M)

end if
end procedure

procedure Spherical balanced k = 2-means(Yn , {vl }Ll=1
)

µ+,µ− ∼ Unif({vl ∀l ∈ Yn }) # Initialize means by uniform sampling from label features without replacement

Yn+ ← ϕ; Yn− ← ϕ
do

sl ← µ⊤+vl − µ⊤−vl ∀l ∈ Yn
Yn+ ← Yn+ ; Yn− ← Yn−
Yn+ ← ϕ; Yn− ← ϕ
{rl }l ∈Yn ← argsort({−sl }l ∈Yn) # Sorting sl in decreasing order. rl indicates how many labels are scoring higher than l

for l ∈ Yn do
if rl <

|Yn |
2

then
Yn+ ← Yn+ ∪ {l }

else if rl >
|Yn |

2
then

Yn− ← Yn− ∪ {l }
else
Yn

sign(sl)
← Yn

sign(sl)
∪ {l }

end if
end for
µ+ ←

∑
l∈Yn+ vl

∥
∑
l∈Yn+ vl ∥2

µ− ←
∑
l∈Yn− vl

∥
∑
l∈Yn− vl ∥

while Yn+ , Yn+ | |Yn− , Yn−
return Yn+ ,Yn−
end procedure

3

Algorithm 3 Parabel Prediction

Input: (a) Test data point x; (b) trained trees T1, ..,TT ; (c) beam search width P
Output: Ranking over labels R

for t ∈ {1, ..,T } do
depth← Tt .depth

n0 ← Tt .root

B ← {n0} # Set of boundary nodes which are maintained for beam search

LLn0
← 0 # LLn

0
is log-likelihood of visiting the node n0

for d = 0; d < depth − 1; d + + do
B ← B

B ← ϕ

for n ∈ B do
for nc ∈ Cn do # Iterate over children of node n

LLnc ← −L (w
⊤
nnc x) + LLn

B ← B ∪ {nc }
end for

end for
B ←retain top(B,LL,P)

end for
for n ∈ B do # Iterate over visited leaf nodes

for l ∈ Yn do # Iterate over labels in leaf node n

Pl ← Pl + exp(−L (w⊤nlx) + LLn) # Sum up the marginal probabilities of a label l being relevant to data point x estimated by all trees

end for
end for

end for
R ← rank({Pl }) # Rank the active labels in decreasing order of their aggregate marginal probabilities

return R

procedure retain top(B,LL,P)
R ← argsort(B,comparator← LLn1

> LLn2
) # Sort the boundary nodes in decreasing order of their log-likelihoods

B ← {R[1], ..,R[P]}

return B
end procedure

Exchanging l1 and l2 in α would reduce the hamming distance
∥α−α ∗ ∥1

2
without increasing the objective, thus leading to contradiction.

Therefore no such global maximum exists whose value is greater than F (α ∗) and whose hamming distance is greater than 1.

Since the above 2 cases cover all alternative possibilities and show that each alternative results in a contradiction, we have proved that α ∗

is in fact a global maximum. □

The optimality for the case of optimizing (1) w.r.t µ± while keeping α fixed is easily seen by observing that the problem reduces to

two simple, independent quadratic equations one for each of µ+ and µ−.

Theorem 2.2. The Spherical Balanced k = 2-means clustering algorithm terminates in a finite number of iterations at a cluster assignment
that is locally optimal.

Proof. Since in each iteration, both the steps of alternating maximization increase the objective in (1), no configuration of α is going

to repeat at the end of 2 distinct iterations. Since there are finite number of total configurations of α , equal to

(L⌊
L
2

⌋
)
, the algorithm will

terminate in finite number of iterations. The algorithm terminates when a round of iteration, consisting of two optimization steps, fail to

make any progress in maximizing the objective. In such a case, changing no single parameter amongst µ±,α can increase the objective.

Hence, a local maximum is reached. □

4

2.2 A Hierarchical Probabilistic Model
The Parabel’s probabilistic model is given by

P(y|x) =
∑
z

P(y|z,x)P(z|x) (7)

=
∑
z∈Zy

∏
n∈L:zn=1

P(yn |zn = 1,x)
∏

n∈I:zn=1

P(zCn |zn = 1,x) (8)

where Zy denotes the set of all the configurations of z which could have led to y being sampled. The model is based on the following

assumptions and theorem.

Unvisited node assumption: This assumption formalizes the observation that the children of an unvisited internal node will never be

traversed and that the labels in an unvisited leaf node will never be sampled. This implies that

P(zCn = 0|zn = 0,x) = 1 ∀n ∈ I (9)

P(yn = 0|zn = 0,x) = 1 ∀n ∈ L (10)

The set of z values which obeys this assumption is denoted byZy.
Subtree independence assumptions: Parabel assumes that the probability distribution at a visited node n, whether internal or leaf, is

sampled independently of all the nodes that are outside the subtree rooted at node n such that

P(zCn |zn = 1,x) = P(zCn |zn = 1,x, ȳSn , z̄Sn) ∀n ∈ I (11)

P(yn |zn = 1,x) = P(yn |zn = 1,x, ȳSn , z̄Sn) ∀n ∈ L (12)

where ȳSn and z̄Sn denote the sets of all the labels and all the z variables that lie outside the subtree rooted at node n.

Theorem 2.3. Tree factorization: Given a label tree, if the subtree independence and unvisited node assumptions hold at all the tree nodes,
then for a label vector y and an indicator vector z ∈ Zy

P(y|z,x) =
∏

n∈L:zn=1

P(yn |zn = 1,x) (13)

P(z|x) =
∏

n∈I:zn=1

P(zCn |zn = 1,x) (14)

Proof. Claim 1:

P(y|z,x) = P(
⋃
n∈L

yn |z,x) (15)

=
∏
n∈L

P(yn |y1, · · · ,yn−1,z,x) –by chain rule of probability (16)

Since from the unvisited node assumption zn = 0 =⇒ yn = 0 with probability 1 (17)

=
∏

n∈L:zn=1

P(yn |y1, · · · ,yn−1,z,x) (18)

=
∏

n∈L:zn=1

P(yn |y1, · · · ,yn−1,zn = 1, z̄Sn ,x) –because zSn = zn for a leaf node (19)

=
∏

n∈L:zn=1

P(yn |zn = 1,x) –by applying (11) (20)

Claim 2:

P(z|x) =
∏

n∈I:zn=1

P(zCn |zn = 1,x) (21)

Let’s prove the above claim by using the principle of induction. Consider a subtree T of the given label tree such that T shares the same

root as the given label tree. Let z(T),N (T) and I (T) be the set of indicator variables, number of nodes and set of internal nodes of the

subtree T . We will use induction over N (T).
Hypothesis: For any subtree T

P(z(T) |x) =
∏

n∈I (T):zn=1

P(zCn |zn = 1,x) (22)

Let us prove the hypothesis through induction on the number of nodes N (T) of the subtree.

5

Base case: The simplest subtree T with N (T) = 1 contains just the root node. For this case, z(T) = {z
root
} and I (T) = ϕ. We assume

z
root

= 1∀z ∈ Zy to be always true, since tree traversal always begins at the root node. Consequently,

P(z(T) |x) = P(z
root

= 1|x) (23)

= 1 (24)

= 1 ∗
∏

n∈ϕ :zn=1

P(zCn |zn = 1,x) (25)

Thus the base case holds true.

Induction: Consider a subtree T with the same root as the given label tree and N (T) > 1. Let us do a pre-order traversal of T and let n̂

be the last internal node that is visited during the traversal. Furthermore, let T be another subtree that is got by removing all the children

of node n̂, which naturally occur after n̂ during the traversal.

Let’s assume that the hypothesis holds true for all the subtrees with number of nodes less than N (T). Then it also holds true for the

subtree T . Now

P(z(T) |x) = P(zCn̂ |zn̂ ,z \ {zn̂ ,zCn̂ },x) P(z \ zCn̂ |x) –by chain rule of probability (26)

(27)

By applying hypothesis to T ,

P(z \ zCn̂ |x) =
∏

n∈I (T):zn=1

P(zCn |zn = 1,x) (28)

If zn̂ = 0 then by (9), zCn̂ = 0, leading to

P(z(T) |x) = P(zCn̂ |zn̂ = 0,z \ {zn̂ ,zCn̂ },x) P(z \ zCn̂ |x) (29)

= P(zCn̂ = 0|zn̂ = 0,x) P(z \ zCn̂ |x) (30)

= P(zCn̂ = 0|zn̂ = 0,x)
∏

n∈I (T):zn=1

P(zCn |zn = 1,x) (31)

= 1 ∗
∏

n∈I (T):zn=1

P(zCn |zn = 1,x) (32)

=
∏

n∈I (T):zn=1

P(zCn |zn = 1,x) (33)

If zn̂ = 1 then by (11)

P(z(T) |x) = P(zCn̂ |zn̂ = 1,z \ {zn̂ ,zCn̂ },x) P(z \ zCn̂ |x) (34)

= P(zCn̂ |zn̂ = 1,x) P(z \ zCn̂ |x) (35)

= P(zCn̂ |zn̂ = 1,x)
∏

n∈I (T):zn=1

P(zCn |zn = 1,x) (36)

=
∏

n∈I (T):zn=1

P(zCn |zn = 1,x) (37)

As a result the hypothesis holds for any subtree T and consequently it holds for the given label tree as well. □

2.3 Prediction
Gain functions defined over the top ranked relevant predictions tend to be preferred for evaluating real-world ranking, recommendation and

tagging applications as compared to traditional multi-label loss functions. Parabel’s predictions therefore optimize such gain functions,

including precision@r and nDCG@r , based on the following theorems.

Theorem 2.4. Let P(y|x) represent the joint probability that a set of labels y is relevant to point x. Then, the ranking of labels according to
their marginal probabilities as rank

(
{P(yl = 1|x)}Ll=1

)
maximizes the expected gain of functions defined over the top ranked predictions alone

such as precision@r and nDCG@r .

Proof. Following [2], precision@r and nDCG@r are defined as follows

Precision@r =
1

r

∑
l

yl ŷl (38)

6

nDCG@r =

∑
l

yl ŷl
log(bl+1)(∑r

l=1

1

log(1+l)

) (39)

(40)

where y ∈ {0,1}L is the true label vector, ŷ ∈ {0,1}L is the predicted label vector which has only r non-zero entries and bl represents the
rank of label l in ŷ.

Both precision@r and nDCG@r can be expressed as

Gain@r = д(r)
∑
l

f (bl)yl ŷl (41)

where д(r) =
1

r
, f (bl) = 1 for precision@r (42)

д(r) = 1/

r∑
l=1

1

log(1 + l)
, f (bl) =

1

log(bl + 1)
for nDCG@r (43)

and f (x) is assumed to be a non-increasing function. (44)

Given P(y|x), the ideal label predictions ŷ∗ with respect to Gain@r are given by

ŷ∗ = arg max

ŷ

∑
y

P(y|x) д(r)
∑
l

f (bl)yl ŷl (45)

= arg max

ŷ

∑
l

∑
y

P(y|x) f (bl)yl ŷl –since д(r) is constant (46)

= arg max

ŷ

∑
l :ŷl=1

f (bl)
∑
y
ylP(y|x) (47)

= arg max

ŷ

∑
l :ŷl=1

f (bl)
∑

y:yl=1

P(y|x) (48)

= arg max

ŷ

∑
l :ŷl=1

f (bl)P(yl = 1|x) (49)

It is straightforward to see that the solution to the above maximization problem is obtained by ranking labels by decreasing P(yl = 1|x)
values and predicting the top r labels {l1, · · · ,lr } where blk = k . Therefore ŷl = 1 if l ∈ {l1, . . . ,lr } and ŷl = 0 otherwise. □

Theorem 2.5. Given a joint probability distribution P(y|x) defined as in (8) over a label tree, the marginal probability of label l in leaf node n
being relevant to point x is given by

P(yl = 1|x) = P(yl = 1|zn = 1,x)
∏

n̂∈An

P(zn̂ = 1|zPn̂ = 1,x) (50)

where An is the set of ancestors of node n apart from the root and Pn̂ is the parent of n̂.

Proof. Let N1 = {n1, · · · ,nH } be a path of length H from the root node n1 to a leaf node nH containing a label l . Let Nh = {nh , · · · ,nH }
be a partial path from an internal node nh to the leaf node nH . The proof uses induction over the length of such partial paths.

Hypothesis: For a node nh ∈ N1 such that the length of the path from nh to leaf nH containing label l is H − h + 1:

P(yl = 1|znh = 1,x) = P(yl = 1|znH = 1,x)
H−1∏
ˆh=h

P(zn ˆh+1 = 1|zn ˆh
= 1,x) (51)

Base case: For path length of 1 i.e. h = H

P(yl = 1|znh = 1,x) = P(yl = 1|znH = 1,x) (52)

which satisfies the hypothesis.

Induction: Let the hypothesis be satisfied for all path lengths < H − h + 1, then we will prove that the hypothesis holds for path length

of H − h + 1. Since yl = 1, by unvisited node assumption (9), znh = 1∀h ∈ {1, · · · ,H }. Now

P(yl = 1|znh = 1,x) = P(yl = 1,znh+1
= 1|znh = 1,x) + P(yl = 1,znh+1

= 0|znh = 1,x) (53)

= P(yl = 1,znh+1
= 1|znh = 1,x) (54)

= P(yl = 1|znh+1
= 1,znh = 1,x) P(znh+1

= 1|znh = 1,x) (55)

= P(yl = 1|znh+1
= 1,x) P(znh+1

= 1|znh = 1,x) – since znh+1
= 1 =⇒ znh = 1 (56)

7

= P(yl = 1|znH = 1,x)
H−1∏

ˆh=h+1

P(zn ˆh+1 = 1|zn ˆh
= 1,x) P(znh+1

= 1|znh = 1,x) (57)

= P(yl = 1|znH = 1,x)
H−1∏
ˆh=h

P(zn ˆh+1 = 1|zn ˆh
= 1,x) (58)

Thus the hypothesis holds true for path of length H − h + 1 and by induction it holds for all path lengths including length of H which

proves the theorem. □

3 RESULTS

Table 1: Results comparing Parabel’s performance to tree, embedding and 1-vs-All based baseline algorithmswhere accuracy is
measured in terms of precision@r (Pr), nDCG@r (Nr), propensity-scored precision@r (PSPr) and propensity-scored nDCG@r
(PSNr). Missing numbers will be updated soon.

Method P1 (%) P3 (%) P5 (%) N1 (%) N3 (%) N5 (%) PSP1 (%) PSP3 (%) PSP5 (%) PSN1 (%) PSN3 (%) PSN5 (%)

EURLex-4K

PfastreXML 75.45 62.70 52.51 75.45 65.97 60.78 43.86 45.72 46.97 43.86 45.23 46.03

PLT 73.64 60.27 49.87 73.64 63.64 58.16 32.33 37.57 40.29 32.33 36.14 37.96

CS 58.52 45.51 32.47 58.52 48.67 40.79 24.97 27.46 25.04 24.97 26.82 25.57

CPLST 72.28 58.16 47.73 72.28 61.64 55.92 28.60 32.49 34.46 28.60 31.45 32.77

WSABIE 68.55 55.11 45.12 68.55 58.44 53.03 31.16 34.85 36.82 31.16 33.85 35.17

LEML 63.40 50.35 41.28 63.40 53.56 48.57 24.10 27.20 29.09 24.10 26.37 27.62

SLEEC 79.26 64.30 52.33 79.26 68.13 61.60 34.25 39.83 42.76 34.25 38.35 40.30

PD-Sparse 76.43 60.37 49.72 76.43 64.31 58.78 38.28 42.00 44.89 38.28 40.96 42.84

DiSMEC 82.40 68.50 57.70 82.40 72.50 66.70 41.20 45.40 49.30 41.20 44.30 46.90

Parabel-l-T=3 81.91 68.50 57.54 81.91 71.88 66.40 37.39 45.04 48.85 37.39 42.91 45.50

Parabel-s-T=3 82.25 68.71 57.53 82.25 72.17 66.54 36.44 44.08 48.46 36.44 41.99 44.91

Parabel-s-T=1 81.52 67.83 56.49 81.52 71.32 65.51 36.07 43.48 47.39 36.07 41.45 44.07

WikiLSHTC-325K

PfastreXML 56.05 36.79 27.09 56.05 50.59 50.13 30.66 31.55 33.12 30.66 31.24 32.09

PLT 41.62 26.78 20.38 41.62 36.88 37.11 13.06 15.96 18.59 13.06 15.03 16.49

SLEEC 54.83 33.42 23.85 54.83 47.25 46.16 20.27 23.18 25.08 20.27 22.27 23.35

PD-Sparse 61.26 39.48 28.79 61.26 55.08 54.67 28.34 33.50 36.62 28.34 31.92 33.68

DiSMEC 64.40 42.50 31.50 64.40 58.50 58.40 29.10 35.60 39.50 29.10 35.90 39.40

Parabel-l-T=3 64.38 42.40 31.14 64.38 58.25 57.85 28.27 33.63 36.77 28.27 31.99 33.77

Parabel-s-T=3 65.04 43.23 32.05 65.04 59.15 58.93 26.90 33.47 37.46 26.90 31.44 33.70

Parabel-s-T=1 63.00 41.35 30.36 63.00 56.78 56.24 26.03 31.67 34.93 26.03 29.93 31.79

Amazon-3M

PfastreXML 43.83 41.81 40.09 43.83 42.68 41.75 21.38 23.22 24.52 21.38 22.75 23.68

Parabel-l-T=3 42.54 40.14 38.22 42.54 41.10 40.03 13.89 16.43 18.24 13.89 15.77 17.05

Parabel-s-T=3 47.51 44.68 42.58 47.51 45.77 44.58 12.84 15.63 17.75 12.84 14.91 16.40

Parabel-s-T=1 46.14 43.35 41.23 46.14 44.41 43.18 12.50 15.20 17.21 12.50 14.50 15.92

Amazon-670K

PfastreXML 39.46 35.81 33.05 39.46 37.78 36.69 29.30 30.80 32.43 29.30 30.40 31.49

PLT 36.86 32.48 29.15 36.86 34.39 32.74 21.86 24.26 26.27 21.86 23.64 25.01

SLEEC 35.05 31.25 28.56 34.77 32.74 31.53 20.62 23.32 25.98 20.62 22.63 24.43

DiSMEC 44.70 39.70 36.10 44.70 42.10 40.50 27.80 30.60 34.20 27.80 28.80 30.70

Parabel-l-T=3 43.90 39.42 36.09 43.90 41.65 40.25 27.34 30.85 34.03 27.34 29.93 32.10

Parabel-s-T=3 44.90 39.81 35.99 44.90 42.16 40.37 26.32 29.99 33.17 26.32 29.04 31.21

Parabel-s-T=1 43.29 38.03 34.07 43.29 40.36 38.39 25.43 28.60 31.27 25.43 27.77 29.61

Continued on next page

8

Table 2: Results of Parabel and baseline algorithms on benchmark datasets where data points were represented by dense deep
XML-CNN [3] embeddings. Parabel is significantly more accurate than tree and embedding based baselines. Parabel is also
2x − 500x faster at training and 150x faster at prediction as compared to 1-vs-All classifiers while being up to 4% worse in terms
of precisions.

Method P1 (%) P3 (%) P5 (%)

Training Test time

time (hr) / point (ms)

EURLex-D-4K

PfastreXML 73.63 60.31 49.69 0.037 1.82

SLEEC 74.31 60.00 49.11 0.35 4.87

LEML 60.34 47.45 37.96 0.67 2.24

WSABIE 76.09 61.69 49.11 0.13 2.24

DiSMEC 76.12 62.91 51.51 0.13 4.36

PD-Sparse 73.53 60.80 49.37 0.12 4.36

PPDSparse 76.32 62.79 51.40 0.013 4.36

Parabel-l-T=3 74.54 61.72 50.48 0.01 0.91

Amazon-D-670K

PfastreXML 28.51 26.06 24.17 2.85 19.35

SLEEC 18.77 16.50 14.97 7.12 22.54

DiSMEC 37.60 33.62 30.64 788.84 429

PPDSparse 33.16 29.60 26.85 3.90 429

Parabel-l-T=3 33.93 30.38 27.49 1.54 2.85

Wikipedia-D-500K

PfastreXML 55.00 36.14 27.38 11.14 6.36

DiSMEC 63.70 42.49 32.26 2133 316.29

PPDSparse 50.40 33.15 25.54 5.85 316.29

Parabel-l-T=3 59.34 39.05 29.35 6.29 2.94

Table 1 – continued from previous page

Method P1 (%) P3 (%) P5 (%) N1 (%) N3 (%) N5 (%) PSP1 (%) PSP3 (%) PSP5 (%) PSN1 (%) PSN3 (%) PSN5 (%)

DSA-2M

PfastreXML 28.52 17.05 12.5 28.52 29.12 30.11 27.37 33.94 36.07 27.37 27.56 28.47

Parabel-l-T=3 32.07 18.64 13.52 32.06 37.92 40.26 29.66 37.67 41.14 29.66 34.86 36.69

Parabel-s-T=3 33.44 20.21 14.79 33.44 40.25 42.86 29.93 39.86 44.14 29.93 36.37 38.63

Parabel-s-T=1 31.26 18.83 13.74 31.26 37.45 39.79 28.01 37.10 40.90 28.01 33.91 35.92

DSA-7M

PfastreXML 28.09 25.79 23.21 28.09 28.81 29.86 26.36 26.64 27.66 26.36 26.55 27.21

Parabel-l-T=3 31.95 29.42 26.40 31.95 32.59 33.52 28.91 29.36 30.49 28.91 29.22 29.97

Parabel-s-T=3 32.84 30.28 27.35 32.84 33.49 34.48 28.66 29.11 30.43 28.66 28.97 29.83

Parabel-s-T=1 30.77 28.35 25.61 30.77 31.37 32.28 26.89 27.29 28.51 26.89 27.17 27.97

9

Table 3: Parabel variants on EURLex-4K

Method P1 (%) P3 (%) P5 (%)

Training Test Model

time (hr) time/point (ms) size (GB)

Parabel-l-T=3 81.91 68.50 57.54 0.063 1.01 0.038

Parabel-s-T=3 82.25 68.71 57.53 0.018 0.88 0.026

Parabel-s-T=1 81.52 67.83 56.49 0.005 0.28 0.0086

Table 4: Variation in Parabel’s performance with the number of label trees, i.e. hyperparameter T , on WikiLSHTC dataset.
Parabel’s accuracy increases by 2% with an ensemble of 3 trees and witnesses diminishing returns with more trees.

Trees P1 P3 P5 Train Test time Model

T (%) (%) (%) time (Hr) /point (ms) size (GB)

1 62.68 41.25 30.40 0.26 0.74 1.06

3 64.57 43.00 31.95 0.79 1.61 3.17

5 65.03 43.43 32.33 1.34 2.65 5.28

10 65.47 43.83 32.68 2.67 13.05 10.56

20 65.67 44.00 32.84 5.34 11.36 21.13

30 65.74 44.07 32.90 8.01 18.44 31.69

40 65.78 44.11 32.93 10.68 25.48 42.25

Table 5: Variation in Parabel’s performance with the number of maximum labels in the leaf nodes, i.e. hyperparameterM , on
WikiLSHTC dataset. Both accuracy and test time increase with largerM , with Parabel achieving around 1ms test time per point
and minimal loss in accuracies atM = 100. Results are reported for Parabel-s-T=3 with 3 trees.

Max. labels P1 P3 P5 Train Test time Model

M (%) (%) (%) time (Hr) /point (ms) size (GB)

400 65.01 43.30 32.14 1.68 5.43 2.72

200 64.81 43.19 32.08 1.07 2.82 2.92

100 64.57 43.00 31.95 0.78 1.58 3.17

50 64.21 42.72 31.76 0.65 0.96 3.49

25 63.80 42.35 31.49 0.62 0.69 3.90

12 63.90 41.94 31.20 0.64 0.55 4.36

Table 6: Variation in Parabel’s performance with the beam search width, i.e. hyperparameter P , onWikiLSHTC dataset. Higher
P values indicate more thorough tree search. Parabel accuracy initially increases with P and quickly saturates at around P = 10.
Results are reported for Parabel-s-T=3 with 3 trees.

Beam Width P1 P3 P5 Test time

P (%) (%) (%) / point (ms)

1 60.48 34.53 23.30 0.18

3 64.49 42.33 30.84 0.51

5 64.62 42.90 31.68 0.82

10 64.57 43.00 31.95 1.58

20 64.54 42.97 31.95 3.28

40 64.52 42.95 31.94 8.59

10

REFERENCES
[1] A. Bertoni, M. Goldwurm, J. Lin, and F. Saccà. 2012. Size Constrained Distance Clustering: Separation Properties and Some Complexity Results. 115 (2012), 125–139.

[2] H. Jain, Y. Prabhu, and M. Varma. 2016. Extreme Multi-label Loss Functions for Recommendation, Tagging, Ranking & Other Missing Label Applications. In KDD.
[3] J. Liu, W. Chang, Y. Wu, and Y. Yang. 2017. Deep Learning for Extreme Multi-label Text Classification. In SIGIR. 115–124.

11

	1 Algorithms
	2 Theorems and Proofs
	2.1 Spherical Balanced k=2-Means Clustering
	2.2 A Hierarchical Probabilistic Model
	2.3 Prediction

	3 Results
	References

