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Abstract
Extreme Classification (XC) offers a scalable and efficient solution
for retrieving highly relevant ads in Sponsored Search settings, sig-
nificantly enhancing user engagement and ad performance. Most
tasks in sponsored search involve highly skewed distributions over
the data point (query) and label (ads) space with limited or no
labeled training data. One approach to tackle this long-tail classifi-
cation problem is to use additional data, often in the form of a graph
such as similar queries, same session queries etc. that are associ-
ated with user queries/ads, called graph metadata. Graph-based ap-
proaches, particularly Graph Convolutional Networks (GCNs), have
been successfully proposed to leverage this graph metadata and
improve classification performance. However, for tail inputs/labels,
GCNs induce graph connections that can be noisy, leading to down-
stream inaccuracies while also incurring significant computation
and memory overheads. To address these limitations, we intro-
duce a novel approach, RAMEN, that harnesses graph metadata as
a regularizer while training a lightweight encoder rather than a
compute- and memory- intensive GCN-based method. This avoids
the inaccuracies incurred by noisy graph induction and sidesteps
the computational costs of GCNs via an easy-to-train and deploy
encoder. The proposed approach is a scalable and efficient solu-
tion that significantly outperforms GCN-based methods. Extensive
A/B tests conducted on live multi-lingual Bing Ads search engine
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traffic revealed that RAMEN increases revenue by 1.25-1.5% and
click-through rates by 0.5-0.6% while improving quality of predic-
tions across different markets. Additionally, evaluations on public
benchmarks show that RAMEN achieves up to 5% higher accuracy
compared to state-of-the-art methods while being 50% faster to
infer, and having 70% fewer parameters.
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1 Introduction
Sponsored search is a key revenue driver for search engines, dis-
playing ads alongside organic results. The task in Sponsored Search
is that of understanding the user query and recommending relevant
ads. One of the popular approaches to predicting these recommen-
dations is extreme classification. Extreme classification (XC) refers
to a supervised machine learning paradigm wherein multi-label
learning is performed on extremely large label spaces. The ability
of XC to handle enormous label sets with millions of labels makes it
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Figure 1: A snapshot from LF-WikiSeeAlsoTitles-320K
dataset for the article on “Cladistics.” The related article
“Common descent” is tagged but the ground truth is missing
the link to “Crown group”. Traversal on the hyperlink edges
can help discover missing link but can also lead to irrelevant
link such as “Vestigial organs”.

an attractive choice for applications such as product recommenda-
tion [12, 30, 37, 42], search & advertisement [12, 24, 45], and query
recommendation [6, 25]. The key appeal of XC comes because of
two reasons: (a) The ability to recommend relevant ads to user
queries even if queries are previously unseen (tail queries), and (b)
The ability to accurately tag rare/tail ads relevant to a user query.
An ad/query is considered to be part of the tail if very few train-
ing data points are associated with it. The tail problem is further
aggravated due to the issue of missing data, since tail query/ads
are also at a higher risk of going missing [24] in the ground truth.
In solving the tail-data problem, XC approaches rely on metadata.
Beyond textual ads descriptions [11, 13, 40], this auxiliary metadata
can augment the limited supervision available for tail query/ads
and is typically available in the form of multi-modal descriptions
such as images [42], or graphs [41, 43, 47]. In this paper, we focus
on graph metadata which is available in several applications, e.g.
for online search and recommendation, users asking the multiple
queries in the same search session (co-session queries) can be a
metadata graph over queries.
Graph metadata in XC: Graph metadata has been used in XC
to (a) handle tail ads [1, 30, 41], and (b) enhance the user query
representations [10, 43, 47, 53]. To handle tail ads, these approaches
use textual descriptions of an ad along with graph metadata to
learn ad embeddings via graph convolutional networks (GCN). To
enhance user query representation, these algorithms rely on a two
stage retrieval pipeline wherein, for an unseen query, first the graph
metadata nodes are retrieved, and subsequently, a GCN combines
them with the query representation. The new combined represen-
tation is then used in a second stage to retrieve the relevant set
of ads. The retrieval of graph nodes or graph traversal can also
help discover missing ads associated with query. To showcase this,
let us consider an example from a publicly available dataset from
XC [3] called LF-WikiSeeAlsoTitles-320K. Here, task is similar to
that of query-to-ads recommendation i.e. for a Wikipedia document
title retrieve related Wikipedia page. For training, the ground truth
comprises links to multiple Wikipedia page under the “See Also”
section of the Wikipedia page. This ground truth is often incom-
plete and contains lots of missing links. Each Wikipedia page also
has multiple hyperlinks to other Wikipedia page, which can be

Figure 2: RAMEN uses graph metadata to regularize encoder
during training. Training framework of RAMEN is robust to
noise in graph. Here R𝑥 and R𝑦 are regularization loss terms
and L is the task based loss term.

used to construct the metadata graph. A snapshot of the dataset is
provided in Figure 1, and shows how a rare Wikipedia page (which
was previously unseen in the training ground truth) “Crown group”
can be recovered for theWikipedia article “Cladistics” by traversing
the aforementioned graph. Similar to hyperlink graphs, in spon-
sored search, for queries/ads, we have graphs of (a) slight textual
perturbations (similar queries/ads) but having similar search intent;
(b) queries that were asked in the same session, or (c) ads that were
clicked in the same search session. RAMEN utilize these metadata
graphs to make faster and accurate predictions in comparison to
GCNs like OAK [43].
Limitations of GCN Methods: In online scenarios, new users
and new advertisers are continuously using the Bing search engine.
The **new user queries and ads account for 75-80% for the search
volume. Having graph metadata associated with each of the items
is a challenging tasks. GCNs circumvent this challenge by inducing
graphs for both queries and ads. These induced graphs are noisy
and can lead to wrong predictions. To illustrate this, recall the
LF-WikiSeeAlsoTitles-320K hyperlink graph – Traversal over the
graph can also lead to irrelevant links such as “Vestigial organs”
and extracting meaningful information from such noisy graphs is a
challenge. It has been noted that having a high-quality graph can
offer enhanced model accuracy in recommendation settings [10, 41,
47, 53]. However, such quality is rarely available for a new query
or ad. In addition to this, the use of GCN architectures makes both
training and inference 50% and 100% more expensive (Table 5) as
compared to RAMEN which is a dual encoder model. Noisy graphs,
along with expensive inference architecture, make GCNs inaccurate
for tail and costly to deploy. Our primary research question is: How
can we use graph metadata for accurate predictions on tail
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Figure 3: RAMEN does not require additional information to compute an accurate representation of the test point. In OAK (an
instance of a GCN), inference is a computationally expensive two-stage pipeline, where the test point is first embedded into the
graph and then, the linked nodes are used to compute the final representation (induced graph). Since RAMEN uses the graph
for regularization, and does not traverse the graph at inference time, it can be 2× faster, and 5% more accurate, than OAK.

queries and ads while saving computational cost compared to
GCNs?

1.1 Our Contributions
To address the above question, we propose gRaph regulArized
encoder training for extreME classificatioN (RAMEN). RAMEN is
a framework to effectively utilize graph metadata during training,
with minimal overheads while saving computational cost in model
size and inference time (Table 5) as compared to GCNs. In particular
RAMEN’s contributions are as follows:

• Graph-based regularization: Using graph metadata to reg-
ularize the training of a dual encoder (Figure 2). This im-
proves the model’s ability to capture semantic relationships
between queries/ads, even for tail queries/ads which resulted
in 1.25-1.5% revenue gains in over 160+ countries and up to
4.8% reduction in brand mismatch rates (Table 2).

• Robustness to graph noise: Developing a mechanism to
dynamically adjust the reliance on graph metadata during
training based on the confidence in the graph links (Table 8).
This helps mitigate the impact of noisy graphs (Table 4) in
training model parameters.

• Efficient inference: RAMEN provides accurate retrievals
for tail queries and avoids the costly step of inducing graph as
used in GCNs like OAK (Figure 3). This reduces computation
cost at inference time by 50%. (Table 5).

RAMEN scales to datasets with up to 360M ads and can offer up
to 5% higher prediction accuracies over state-of-the-art methods
including those that use graph metadata to train GCN.

2 Related work
Extreme classification (XC) is a key paradigm in several areas
such as ranking and recommendation. The literature on XCmethods
is vast [2, 4, 12, 15, 16, 18, 24–27, 29, 32, 37, 39–41, 45, 47, 49–51, 55–
57, 59]. Early XC methods used fixed (bag-of-words) [2, 24, 29, 45,
50, 56] or pre-trained [25] features and focused on learning only a
classifier architecture. Recent advances have demonstrated signifi-
cant gains by using task-specific features obtained from a variety
of deep encoders such as bag-of-embeddings [12, 13], CNNs [32],
LSTMs [57], and transformers [4, 27, 55, 59]. Training is scaled to

millions of labels and training points by performing encoder pre-
training followed by classifier training [12]. A data point is trained
only on its relevant labels (that are usually few in number) and a
select few irrelevant labels deemed most informative (known as
hard negatives) and obtained using a process known as negative
mining [8, 11, 13–15, 20, 22, 28, 31, 36, 38, 46, 52].
Label Metadata in XC: Most XC methods use textual represen-
tations as label metadata since they facilitate scalable training
and inference and allow for leveraging good-quality pre-trained
deep encoders such as RoBERTa [34], DistilBERT base [48], etc.
Examples include encoder-only models such as DEXML [17], Twin-
BERT [35] and ANCE [52], and encoder+classifier architectures
such as DECAF [40], SiameseXML [11], X-Transformer [5], XR-
Transformer [6], LightXML [27], and ELIAS [59], amongst many
others [4, 33, 55, 57]. There is far fewer works in the literature on the
use of other forms of label metadata. For instance, ECLARE [41] and
GalaxC [47] use graph convolutional networks whereasMUFIN [42]
explores multi-modal label metadata in the form of textual and vi-
sual descriptors for labels.
Graph Neural Networks in Related Areas: A sizeable body of
work exists on using graph neural networks such as graph convo-
lutional networks (GCN) for recommendation [7, 9, 19, 21, 23, 43,
53, 54, 58, 60, 61]. Certain methods, e.g., FastGCN [7], KGCL [54],
and LightGCN [21] learn item embeddings as (functions of) free
vectors. This makes them unsuitable for making predictions on
a novel test point. Other GCN-based methods such as OAK [43],
PINA [10], GraphSAGE [19] and GraphFormers [53] learn node
representations as functions of node metadata e.g. textual descrip-
tions. Consequently, these methods work in zero-shot settings, but
they still incur the high storage and computational cost of GCNs.
Moreover, diminishing returns are observed with increasing the
number of layers of the GCN [9, 41] with at least one model, namely
LightGCN [21] foregoing all non-linearities in its network, effec-
tively opting for a single-layer GCN. It must be noted that GCNs
can be highly accurate if one has access to an oracle for predicting
relevant nodes (Table 4). However, such oracle is never available
online and the slightest error in first stage retrieval leads to poor
retrieval quality (Sec. 4).

We now develop the RAMEN method that offers a far more
scalable alternative to GCNs and other popular graph-based archi-
tectures in XC settings, while significantly reducing the overheads
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of graph-based learning, and offering sustained and significant
performance boosts in prediction accuracies.

3 RAMEN: gRaph regulArized encoder training
for extreME classificatioN

Notation: Let 𝐿 be the number of labels in the recommendation
task. Let x𝑖 , z𝑙 be the textual descriptions of the queries or data
point 𝑖 and ads or label 𝑙 respectively. From this point, we will be
using query as data point and ads as labels interchangeably as per
context need. For each data point 𝑖 ∈ [𝑁 ], its ground-truth label
vector is y𝑖 ∈ {−1, +1}𝐿 , where 𝑦𝑖𝑙 = +1 if label 𝑙 is relevant to the
data point 𝑖 and otherwise 𝑦𝑖𝑙 = −1. The training set is comprised
of 𝑁 labeled data points and 𝐿 labels as D := {{x𝑖 , y𝑖 }𝑁𝑖=1, {z𝑙 }

𝐿
𝑙=1}.

Let X def
= {x𝑖 }𝑁𝑖=1 denote the set of training data points andZ def

=

{z𝑙 }𝐿𝑙=1 denote the set of labels. The metadata graph over the anchor
sets A (**hyper-links, co-bidded queries) is denoted by G𝑋𝐴 and
G𝑍𝐴 for data point (query) and label (ads), respectively.
Metadata Graphs: In recommendation scenario, RAMEN obtains
metadata graphs over queries and ads using user session or tex-
tual similarity as described in introduction section. These graph
is essentially links between queries/ads to their relevant node in
the graph. These are also called Anchor Sets. Refer to Figure 1,
here hyper-linked Wikipedia pages are called anchor set. Let A =

{a1, a2, . . . , a𝑀 } denote an anchor set of𝑀 elements e.g. pages con-
nected via hyperlink for LF-WikiSeeAlsoTitles-320K dataset. We
abuse notation to let a𝑚 denote the textual representation of an-
chor item𝑚 ∈ [𝑀] as well. Each query and ad is associated with
metadata graph over anchor sets:
(1) Query metadata graph: This is denoted as G𝑋𝐴 = (𝑉𝑋𝐴, 𝐸𝑋𝐴)

with 𝑉𝑋𝐴
def
= X ∪ A i.e., the union of training data points and

anchor points. The matrix 𝐸𝑋𝐴 = {𝑒𝑖𝑚} ∈ {0, 1}𝑁×𝑀 encodes
whether data point x𝑖 has an edge to anchor item a𝑚 or not.

(2) Ads metadata graph: This is denoted as G𝑍𝐴 = (𝑉𝑍𝐴, 𝐸𝑍𝐴) with
𝑉𝑍𝐴

def
= Z ∪A i.e. the union of labels and anchor points. The

matrix 𝐸𝑍𝐴 = {𝑒𝑙𝑚} ∈ {0, 1}𝐿×𝑀 encodes whether label z𝑙 has
an edge to anchor item a𝑚 or not.

3.1 Regularized Training Framework
RAMEN incorporates graph based regularization while training
model parameters. RAMEN training requires two components: (a)
A base XC (M) component which consists of an encoder block (E𝜃𝜃𝜃 ),
and (b) The metadata graph (A𝑐 ) component as described above.
The encoder E𝜃𝜃𝜃 : X → S𝐷−1 with trainable parameters𝜃𝜃𝜃 is used to
embed query and ads using their textual descriptions. Here, S𝐷−1

denotes the 𝐷-dimensional unit sphere, i.e., the encoder provides
unit-norm embeddings (unless stated otherwise). RAMEN uses a
DistilBERT [48] encoder as E𝜃𝜃𝜃 . In the following sections, we first
explain training framework of RAMEN followed by incorporating
graph regularization for robustness.
RAMEN loss function: Figure 2 shows overall training framework
for RAMEN. The encoder is trained using triplet loss (L(𝜃𝜃𝜃 )) over
query and ad representation, regularized using two components: a)
The anchor set on the query side (R𝑥 (𝜃𝜃𝜃 )), and b) The anchor set
on ad side (R𝑧 (𝜃𝜃𝜃 )), as explained in metadata graph section. The

L(𝜃𝜃𝜃 ) function is then given by:

L(𝜃𝜃𝜃 ) =
𝑁∑︁
𝑖=1

∑︁
𝑙 :𝑦𝑖𝑙=+1
𝑘 :𝑦𝑖𝑘=−1

[E𝜃𝜃𝜃 (z𝑘 )⊤E𝜃𝜃𝜃 (x𝑖 ) − E𝜃𝜃𝜃 (z𝑙 )⊤E𝜃𝜃𝜃 (x𝑖 ) + 𝛾]+ .

Note that this loss function encourages the encoder to embed a
query close to its relevant ad and far from irrelevant ones. The
optimized encoder (𝜃𝜃𝜃∗) through RAMEN framework is obtained by
minimizing the following objective

𝜃𝜃𝜃∗ = min
𝜃𝜃𝜃

{
L(𝜃𝜃𝜃 ) +

𝑇∑︁
𝑡=1

(
𝜆𝑥R𝑡

𝑥 (𝜃𝜃𝜃 ) + 𝜆𝑧R𝑡
𝑧 (𝜃𝜃𝜃 )

) }
,

where 𝜆𝑥 and 𝜆𝑧 are regularization constants. R𝑡
𝑥 (𝜃𝜃𝜃 ) and R𝑡

𝑧 (𝜃𝜃𝜃 ) are
regularization loss applied over anchor set A𝑡 as explained below.
Metadata Graph Regularizers: Given an encoder E𝜃𝜃𝜃 , an anchor
set A, and graphs G𝑋𝐴,G𝑍𝐴 , we define the following two regular-
ization functions over the encoder parameters:

R𝑥 (𝜃𝜃𝜃 ) =
𝑁∑
𝑖=1

∑
𝑝 :𝑒𝑖𝑝=1
𝑛:𝑒𝑖𝑛=0

[E𝜃𝜃𝜃 (x𝑖 )⊤E𝜃𝜃𝜃 (a𝑛) − E𝜃𝜃𝜃 (x𝑖 )⊤E𝜃𝜃𝜃 (a𝑝 ) + 𝛾]+

R𝑧 (𝜃𝜃𝜃 ) =
𝐿∑
𝑙=1

∑
𝑝 :𝑒𝑙𝑝=1
𝑛:𝑒𝑙𝑛=0

[E𝜃𝜃𝜃 (z𝑙 )⊤E𝜃𝜃𝜃 (a𝑛) − E𝜃𝜃𝜃 (z𝑙 )⊤E𝜃𝜃𝜃 (a𝑝 ) + 𝛾]+

Here, 𝑝 is the positive anchor and 𝑛 are in-batch negatives anchors
(explained in next section). Note that these two regularizers encour-
age the encoder to keep data points and labels closely embedded
to their related anchor points and far away from unrelated anchor
points. If we have more than one anchor set, say A1,A2, we can
define corresponding regularizers R𝑡

𝑥 (𝜃𝜃𝜃 ),R𝑡
𝑧 (𝜃𝜃𝜃 ), 𝑡=1, 2. Note that,

while we are explaining using two anchor sets, RAMEN can be eas-
ily extended to multiple anchor sets without the loss of generality.
Training RAMEN: RAMEN utilizes in-batch negative mining [8,
11, 13–15, 20](Figure 2). Specifically, a mini-batch is created using
uniformly chosen set of queries and for each query, a relevant ad
and a related anchor from query-anchor graph is chosen randomly.
Similarly, for each of the chosen ad, a related anchor from ad-anchor
graph is chosen randomly. Then, hard negative ads for a query are
chosen only amongst those ads present in that mini-batch. Similarly,
hard negative anchors for query/ad are chosen from only those
anchors present in that mini-batch. Without the loss of generality
training of RAMEN can be scaled to any number of anchor sets.
RAMEN uses dual encoder models like DistilBERT [48] and uses
graph regularized training framework as described above to learn
robust query/ad representation.
Inference with RAMEN: Inference of RAMEN is same as that of
any dual encoder model. During inference, query/ads representa-
tion is computed using the trained encoder and top-𝑘 relevant ads
are retrieved based on cosine similarity. Encoder trained through
proposed graph regularization sees the gains in accuracy due to
additional metadata graph without computational cost of GCNs.

RAMEN introduces a novel approach to incorporate graph meta-
data into XC, addressing the limitations of GCN-based methods.
Unlike GCNs, which rely on computationally expensive graph in-
duction, RAMEN employs amore efficient dual encoder architecture
(Figure 3). This architecture, coupled with a graph-based regular-
ization, empowers the model to learn robust representations of
queries and ads (Figure 2). By focusing on relevant anchor points



Graph Regularized Encoder Training for Extreme Classification WWW Companion ’25, April 28-May 2, 2025, Sydney, NSW, Australia

for regularization during training, RAMEN eliminates the need to
induce graph at inference time, eliminating the impact of noise at
inference time. Additionally, the proposed method demonstrates en-
hanced ability to handle new entities as graph-based regularization
improves the representation of tail queries/ads. These combina-
tion of factors results in improved accuracy and efficiency, making
RAMEN favorable for real-world recommendation tasks.

4 Experiments
In this section, we compare RAMEN against deployed algorithms
in Bing Ads, as well as established baselines on public benchmark
datasets on the XML Repository [3]. In particular, this paper bench-
marks RAMEN on the LF-WikiSeeAlsoTitles-320K dataset where
the recommendation task is similar to Bing Ads. The dataset is
curated fromWiki dumps (link). The scenario involves recommend-
ing related articles. Articles under the “See Also” section were used
as ground-truth labels. Internal hyperlinks and category links were
used to create two sets of metadata graphs – one using hyperlinked
Wikipedia articles as anchors and the other, using Wikipedia cate-
gories as anchors. On the public dataset, all queries in the test set
are unseen, making this a cold start problem, while on the Bing data,
user queries could either belong to the head/tail, or be unseen (cold
start). In online A/B tests, RAMEN shows significant improvement
in revenue, click through rates (CTR) and impression yield (IY).
In addition to that, RAMEN observes significant reduction in bad
match rate (BMR) with respect to brands (Brand BMR) and locations
(Location BMR). This is crucial for advertisers who want to ensure
that their ads are shown only for relevant queries, based on brand
terms and location context. Please refer to Tab. 9 of the appendix
for dataset statistics. For details on evaluation metrics please refer
to appendix C.
Implementation details: For public datasets we initialize the
encoder with a pre-trained DistilBERT and fine-tune it. During
training, we prune the metadata graph using the fine-tuned encoder
to eliminated noise in the training graph. Table 10 in the appendix
summarizes all hyper-parameters used for each dataset.We reiterate
that, even though RAMEN uses a graph at training time, inference
does not require any such information, making it highly suitable
for long-tail queries and ads. We compare variants of RAMEN
against baseline XC and dense retrieval approaches. In particular,
we consider RAMEN (ANCE) and RAMEN (NGAME) where ANCE
and NGAME where used as base XC model, on top of which we
add RAMEN’s regularization terms during training. All RAMEN
variants and most baseline variants use the PyTorch [44] framework
and were trained on 4 Nvidia V100 GPUs. DEXML [16] was trained
on 16 Nvidia A100 GPUs. Refer to Appendix A for additional details.

Using this section we answer the following questions:
• What is the impact of graph regularization on accuracy and
quality for real world applications?

• What is the computational cost of training RAMEN over
GCN based approach (OAK)?

• What key design choices in RAMEN which lead to its suc-
cess?

Case-study for Sponsored Search: Matching user queries with
relevant advertiser. For example, for the query "cheap nike shoes",

a valid ad is "nike sneakers" but "adidas shoes" or "nike shorts" are
not.

We study the effectiveness of RAMEN in this application by
comparing it against the state-of-the-art encoder in production by
conducting A/B test on live search-engine traffic. The click logs
were mined to gather graph metadata for RAMEN, including two
types of signals:
(1) Co-session queries/Ads: Queries that were asked in the same

search session by multiple users as well as Ads that were clicked
together in same session.

(2) Similar queries/ Ads: Queries/Ads that are slight perturbations
of each other but have the similar search intent.
RAMEN was trained on a dataset containing 540M queries and

360M ads mined as described above but over a longer period to
conduct an A/B test on the search engine. RAMEN was found to
increase the Impression-Yield (relevant ad impressions per user
query) by 0.70% and the CTR (clicks through rates) by 0.86% when
compared against a control ensemble containing state-of-the-art
embedding-based, generative, GCN, and XC algorithms Table 1.
Gains in RAMEN are primarily from rare query deciles, as shown
in Table 1, which is the intended decile for RAMEN. In addition
to gains in revenue metrics, RAMEN leads to significant reduction
in bad match rates in terms of brands and location by -4.8% and
-7.2% respectively (Table 2). The A/B test was conducted on 160+
countries and Table 3 shows that RAMEN leads to gains in 1.25-
1.44% increase in revenue, 0.3-0.66% increase in CTR and 0.28-0.9%
increase in IY.
Results on benchmark datasets: Table 6 compares RAMEN vari-
ants with graph and XC methods on standard XC metrics like
Propensity scored precision and nDCG. RAMEN is 5 points more
accurate over the best baseline numbers. In particular RAMEN is
2-3 points more accurate than traditional graph-based methods. Ad-
ditionally, the RAMEN variants are 3-4 points more accurate over
OAK [43] & PINA [10], which use both XC and graph metadata.
Analysis of gains and computation cost: These experiments
where conducted on public benchmark datasets for reproducibility
and access to broader audience. Recall that the GCN (OAK) two-
stage retrieval pipeline can be noisy. Table 4 demonstrates that, if
we replace the first stage with the oracle linker (graph induction
with zero error), the performance of these graph-based methods
starts to outperform RAMEN variants. However, the oracle linker is
never available for a novel test point, and RAMEN variants achieved
a similar performance in a fraction of the cost of training and predic-
tion time as shown in Table 5. In addition to reduction in inference
time, RAMEN requires 3.5× less model parameters compared to
OAK, as can be seen in Table 5, while being 2 absolute points more
accurate in Precision@1. Table 7 shows that RAMEN (ANCE) could
make tail label predictions such as “Crown group” which was a
missing label ground truth in the training data.
Ablations on design choices: To understand the impact of noisy
edges in metadata, experiment “– No Pruning” disabled the trim-
ming of noisy edges using cosine similarity filtering. A 4% loss in
P@1 was observed which underscores the necessity of pruning
unhelpful edges during training. RAMEN (ANCE) uses multiple
metadata graphs for both query and ads. To ascertain the contri-
butions of the query-anchor and ads-anchor metadata graphs, the
ablations “– No Doc. Graph” and “– No Lbl. Graph” were conducted.

https://dumps.wikimedia.org/enwiki/20220520/


WWW Companion ’25, April 28-May 2, 2025, Sydney, NSW, Australia Anshul Mittal et al.

Table 1: Query decile wise-comparison of RAMEN versus an
ensemble of deployed Bing Ads algorithms (a.k.a. Control)

Decile %Δ Revenue %Δ CTR %Δ IY

HEAD 0.42% 0.22% 0.27%
TORSO 0.41% 0.30% 0.19%
TAIL 0.52% 0.34% 0.24%

TOTAL 1.35% 0.86% 0.70%

Table 2: RAMEN leads to significant reduction in brand as
well as location bad match rate in comparison to Bing Ads
control over 160+ countries.

%Δ Brand BMR %Δ Location BMR

-4.8 -7.2

Table 3: Results of RAMEN in comparison to BingAds control
in over 160+ countries grouped in 4 Clusters by geography

Market Cluster %Δ Revenue %Δ CTR %Δ IY

MC-1 1.25 0.31 0.28
MC-2 1.44 0.64 0.19
MC-3 1.46 0.66 0.92
MC-4 1.27 0.63 0.58

Table 4: Results using Oracle Linker for GCN Vs RAMEN
(ANCE) on LF-WikiSeeAlsoTitles-320K.

Method P@1 P@5 N@5 PSP@1 PSP@5

RAMEN (ANCE) 35.2 18.4 35.2 29.0 34.5
OAK 33.7 17.1 34.4 25.8 30.8
OAK + Oracle 38.9 19.4 40.4 29.7 34.8

These experiments reveal that information from these graphs plays
a significant role, as disabling either leads to a 1.5–2% reduction in
P@1. The information from these graphs can be incorporated in
baseline methods like ANCE. To understand its impact, experiment
“AugGT” trains ANCE with augmented ground truth. The ground
truth was expanded by using label propagation wherein a label and
a training point are linked by an edge if the label shares a neighbor
in the metadata graph of the said training point. RAMEN (ANCE)
outperformed the “AugGT” setup by 15%. This suggests that while
leveraging graph information for ground truth enhancement is
convenient, it may not be as effective due to noisy edges.

5 Conclusion
This paper presents RAMEN, a novel approach to incorporating
graph metadata into extreme classification tasks. RAMEN addresses
the limitations of GCN-based methods by leveraging a more effi-
cient dual encoder architecture and a robust graph regularization
technique. The experimental results demonstrate the effectiveness
of RAMEN in enhancing accuracy and computational efficiency
particularly for tail queries and ads.

By comparing RAMEN with state-of-the-art methods on public
benchmarks and real-world datasets like Bing Ads, we have shown

Table 5: RAMEN (ANCE)’s computation relative to baselines
on LF-WikiSeeAlsoTitles-320K.

Method Train Time Pred Time Model size P@1

RAMEN (ANCE) 1× 1× 1× 35.2
OAK 1.5× 2× 3.5× 33.7
ANCE 0.9× 1× 1× 30.8
DEXML 2.1× 1× 1× 29.9

Table 6: Results comparing RAMEN against XC and Graph-
based baselines on the short-text LF-WikiSeeAlsoTitles-320K
dataset. RAMEN variants is up to 15% more accurate as com-
pared to both text-based and graph-based baselines. Here
PSP, P and N refers to propensity score precision, precision
and nDCG respectively.

PSP@1 PSP@5 P@1 P@5 N@5

RAMEN (ANCE) 28.9 34.5 35.2 18.4 36.5
RAMEN (NGAME) 28.6 34.4 35.46 18.5 36.8

OAK 25.8 30.8 33.7 17.1 34.3
GraphSage 21.5 23.5 27.3 12.9 28.3
GraphFormer 19.2 22.7 21.9 11.8 24.1

ANCE 25.1 28.7 30.7 15.3 31.4
NGAME 24.4 29.8 32.6 16.6 33.2
DEXA 24.4 28.6 31.7 15.8 32.2
DEXML 22.8 25.6 29.9 14.7 30.7
DECAF 16.7 21.1 25.1 12.8 25.9
Parabel 9.2 11.8 17.6 8.5 17.4
CascadeXML 12.6 17.6 23.4 12.1 23.4
XR-Transformer 10.1 12.7 19.4 8.9 18.5
AttentionXML 9.4 11.7 17.5 8.5 17.1
Bonsai 10.6 13.7 19.3 9.5 19.2
SiameseXML 26.8 30.3 31.9 16.2 32.5
ECLARE 22.1 26.2 29.3 15.1 30.2
ELIAS 13.4 17.6 23.3 11.8 23.6

Table 7: A subjective comparison of predictions made
by RAMEN, the leading text-based method NGAME, and
the leading graph-based method GraphFormers on LF-
WikiSeeAlsoTitles-320K. Labels that are a part of the ground
truth are formatted in black color. Labels not a part of the
ground truth are formatted in light gray color. Relevant la-
bels that are missing from the ground truth are marked in
bold black. RAMEN (ANCE) could make predict highly rele-
vant labels such as “Crown group”, which were missing from
the ground truth as well as omitted by other methods.

Method Prediction

Document: Clade

RAMEN (ANCE) Cladistics, Phylogenetics, Crown group, Para-
phyly, Polyphyly

ANCE Cladistics, Linnaean taxonomy, Polyphyly,
Paragroup, Molecular phylogenetics

OAK Phylogenetic nomenclature, Molecular phylo-
genetics, Haplotype, Cladistics, Paragroup
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Table 8: Ablations were done using ANCE as base algorithm
(RAMEN (ANCE)) on LF-WikiSeeAlsoTitles-320K to under-
stand the impact of design choices on the quality of encoder
training. RAMEN (ANCE)’s design choices are seen to be op-
timal and offer 2.5–13% improvement in the P@1metric over
alternate design choices.

RAMEN P@1 P@3 P@5 N@3 N@5

RAMEN (ANCE) 35.2 24.1 18.3 35.3 36.5

− No Pruning 31.3 18.9 12.8 31.43 31.5
− No Doc. Graph 29.7 17.5 12.5 30.7 30.8
− No Lbl. Graph 34.1 22.7 14.6 32.0 34.1
AugGT 15.6 8.9 6.5 15.7 16.3

that it consistently outperforms existing approaches. The proposed
graph regularization technique effectively mitigates the impact
of noise in the graph data, leading to improved performance. In
particular RAMEN can yield gains of up to 1-1.5% in Revenue as
well as 0.86% and 0.70% in CTR and Impression Yield, respectively
over Bing Ads control. RAMEN leads to enhanced user experience
as well as satisfaction by significantly reducing bad match rates in
brand and location sensitive queries by 4.8% and 7.2% respectively.
Additionally, RAMEN’s efficient architecture enables it to scale
well to large-scale datasets. Performance gains in RAMEN over
OAK (GCN based method) also comes with 70% reduced model
parameters, 50% reduced inference time.

Future research directions include exploring the application of
RAMEN to other domains, investigating further enhancements to
the model architecture, and developing more efficient training and
inference techniques.
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Graph Regularized Encoder Training for Extreme Classification
(Appendix)

A Implementation details
Links obtained on the metadata graph from raw data suffer from missing links in much the same way there are missing labels in the ground
truth. To deal with this, RAMEN performs a random walk with restart on each anchor node. The random walk was performed for 400 hops
with a restart probability of 0.8, thus ensuring that the walk did not wander too far from the starting node. This random walk could also
introduce noisy edges, leading to poor model performance. To deal with such edges, in-batch pruning was performed and edges to only
those anchors were retained which had a cosine similarity of > 0 based on the embeddings given the encoder. To get the encoder, RAMEN
initialize the encoder with a pre-trained DistilBERT and fine-tuned it for 10 epochs(warmup phase) using unpruned metadata graphs. Then
the metadata graphs were pruned using the fine-tuned encoder. Encoder fine-tuning was then was continued for 5 epochs using the pruned
graphs after which the graphs were re-pruned. These alternations of 5 epochs of encoder fine-tuning followed by re-pruning were repeated
till convergence. The learning rate for each bandit was set to 0.01. Table 10 in supplementary material summarizes all hyper-parameters for
each dataset. It is notable that even though RAMEN uses a graph at training time, inference does not require any such information, making
it highly suitable for long-tail queries.

B Data stats
Table 9: Dataset statistics summary for benchmark datasets used by RAMEN. Entries marked with ‡ were not disclosed because
the dataset is proprietary.

# Train Pts
𝑁

# Labels
𝐿

# Test Pts
𝑁 ′

Avg. docs.
per label

Avg. labels
per doc. Graph Types # Graph Nodes

𝐺

Avg. node
neighbors
per doc.

Avg. node
neighbors
per label

LF-WikiSeeAlsoTitles-320K

693,082 312,330 177,515 4.67 2.11 Hyperlink
Category

2,458,399
656,086

38.87
4.74

7.71
4.82

C Evaluation metrics
• Impression Yield or IY =

Relevant Ads impressed
Total number of queries × 100

• Click through rate or CTR = Number of Clicks
Number of Impressions × 100

For more information about Precision@K (P@K) and nDCG@K (N@K) and their propensity scored variants, please refer to [3].

Table 10: Hyper-parameter values for RAMEN on all datasets to enable reproducibility. RAMEN code will be released publicly.
Most hyperparameters were set to their default values across all datasets. LR is learning rate. Multiple clusters were chosen to
form a batch hence 𝐵 > 𝐶. Clusters were refreshed after 5 epochs. Cluster size 𝐶 was doubled after every 25 epochs. Margin
𝛾 = 0.3 was used for contrastive loss. For training M2 number of positive samples and negative samples were kept at 2 and 12
respectively. A cell containing the symbol ↑ indicates that that cell contains the same hyperparameter value present in the cell
directly above it.

Dataset Batch
Size 𝑆

Encoder
epochs

Encoder LR
𝐿𝑅1

BERT seq.
len 𝐿𝑚𝑎𝑥

LF-WikiSeeAlsoTitles-330K 1024 300 0.0002 32
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