
A APPENDIX
In this supplementary material, we present various details omitted from the main text due to lack of space, including a proof of Thm 3.1, a

detailed analysis of the time complexity of the various modules in the training and prediction pipelines of DECAF, details of the datasets
and evaluation metrics used in the experiments, further clarifications about how some ablation experiments were carried out, as well as

additional experimental results including a subjective comparison of the prediction quality of DECAF and various competitors on handpicked

recommendation examples.

A.1 Proof of Theorem 3.1
We recall from the main text that L(Θ) denotes the original likelihood expression and

˜L(Θ | S) denotes the approximate likelihood

expression that incorporates the shortlister S. Both expression are reproduced below for sake of clarity.

L(Θ) = 1

𝑁𝐿

∑
𝑖∈[𝑁 ]

∑
𝑙 ∈[𝐿]

ℓ𝑖𝑙 (Θ)

˜L(Θ | S) = 𝐾

𝑁𝐿𝐵

∑
𝑖∈[𝑁 ]

∑
𝑙 ∈S(x̂𝑖 )

ℓ𝑖𝑙 (Θ)

Theorem A.1 (Theorem 3.1 Restated). Suppose the training data has label sparsity at rate 𝑠 i.e.
∑
𝑖∈[𝑁 ]

∑
𝑙 ∈[𝐿] I {𝑦𝑖𝑙 = +1} = 𝑠 · 𝑁𝐿 and

the shortlister offers a recall rate of 𝑟 on the training set i.e.
∑
𝑖∈[𝑁 ]

∑
𝑙 ∈S(x̂𝑖 ) I {𝑦𝑖𝑙 = +1} = 𝑟𝑠 · 𝑁𝐿. Then if Θ̂ is obtained by optimizing the

approximate likelihood function ˜L(Θ | S), then the following always holds

L(Θ̂) ≤ min

Θ
L(Θ) + O

(
𝑠 (1 − 𝑟 ) ln

(
1

𝑠 (1 − 𝑟 )

))
.

Below we prove the above claimed result. For the sake of simplicity, let Θ∗ = argminΘ L(Θ) denote the optimal model that could

have been learnt using the original likelihood expression. As discussed in Sec 3, OvA methods with linear classifiers assume a likelihood

decomposition of the form P [y𝑖 | x𝑖 ,Θ] =
∏𝐿
𝑙=1
P [𝑦𝑖𝑙 | x̂𝑖 ,w𝑙 ] =

∏𝐿
𝑙=1

(1 + exp (𝑦𝑖𝑙 · ⟨x̂𝑖 ,w𝑙 ⟩))−1 where x̂𝑖 = ReLU(E(x𝑖 )) is the document

embedding obtained using token embeddings E and embedding block parameters taken from Θ, and w𝑙 is the label classifier obtained as

shown in Fig 3. Thus, for a label-document pair (𝑖, 𝑙) ∈ [𝑁 ] × [𝐿], the model posits a likelihood

P [𝑦𝑖𝑙 | x̂𝑖 ,w𝑙 ] = (1 + exp (𝑦𝑖𝑙 · ⟨x̂𝑖 ,w𝑙 ⟩))−1

However, in the presence of a shortlister S, the above model fails to hold since for a document 𝑖 , a label 𝑙 ∉ S(x̂𝑖 ) is never predicted. This
can cause a catastrophic collapse of the model likelihood if even a single positive label fails to be shortlisted by the shortlister, i.e. if the

shortlister admits even a single false negative. To address this, and allow DECAF to continue working with shortlisters with high but still

imperfect recall, we augment the likelihood model as follows

P [𝑦𝑖𝑙 | x̂𝑖 ,w𝑙 ] =
{
(1 + exp (𝑦𝑖𝑙 · ⟨x̂𝑖 ,w𝑙 ⟩))−1 𝑙 ∈ S(x̂𝑖 )
𝑦𝑖𝑙

(
𝜂 − 1

2

)
+ 1

2
𝑙 ∉ S(x̂𝑖 )

,

where 𝜂 ∈ (0, 1] is some default likelihood value assigned to positive labels that escape shortlisting (recall that 𝑦𝑖𝑙 ∈ {−1, +1}). Essentially,
for non-shortlisted labels, we posit their probability of being relevant as 𝜂. The value of 𝜂 will be tuned later.

Note that we must set 𝜂 ≪ 1 so as to ensure that these default likelihood scores do not interfere with the prediction pipeline which

discards non-shortlisted labels. We will see that our calculations do result in an extremely small value of 𝜂 as the optimal value. However,

also note that we cannot simply set 𝜂 = 0 since that would lead to a catastrophic collapse of the model likelihood to zero if the shortlister has

even one false negative. Although our shortlister does offer good recall even with shortists of small length (e.g. 85% with a shortlist of length

≈ 200), demanding 100% recall would require exorbitantly large beam sizes that would slow down prediction greatly. Thus, it is imperative

that the augmented likelihood model itself account for shortlister failures.

To incorporate the above augmentation, we also redefine our log-likelihood score function to handle document-label pairs (𝑖, 𝑙) ∈ [𝑁 ] × [𝐿]
such that 𝑙 ∉ S(x̂𝑖 )

ℓ𝑖𝑙 (Θ | S) =
{
ln (1 + exp (𝑦𝑖𝑙 · ⟨x̂𝑖 ,w𝑙 ⟩)) 𝑙 ∈ S(x̂𝑖 )
− ln

(
𝑦𝑖𝑙

(
𝜂 − 1

2

)
+ 1

2

)
𝑙 ∉ S(x̂𝑖 )

,

Note the negative sign in the second case since ℓ𝑖 𝑗 is the negative log-likelihood expression. We will also benefit from defining the following

residual loss term
Δ(Θ | S) =

∑
𝑖∈[𝑁 ]

∑
𝑙∉S(x̂𝑖 )

ℓ𝑖𝑙 (Θ)

Note that Δ simply sums up loss terms corresponding to all labels omitted by the shortlister. We will establish the result claimed in the

theorem by comparing the performance offered by Θ̂ and Θ∗
on the loss terms given by

˜L and Δ. Note that for any Θ we always have the



following decomposition

L(Θ) = 1

𝑁𝐿

(
𝑁𝐿𝐵

𝐾
· ˜L(Θ | S) + Δ(Θ | S

)
Now, since Θ̂ optimizes

˜L, we have
˜L(Θ̂ | S) ≤ ˜L(Θ∗ | S) which settles the first term in the above decomposition. To settle the second

term, we note that as per the recall 𝑟 and label sparsity 𝑠 terms defined in the statement of the theorem, the number of positive labels not

shortlisted by the shortlister S throughout the dataset is FPR · 𝑁𝐿 where FPR = (1 − 𝑟 )𝑠 is the false negative rate of the shortlister. Similarly,

the number of negative labels not shortlisted by the shortlister throughout the dataset by (𝐿 − 𝐵)𝑁 can be seen to be TNR · 𝑁𝐿 where

TNR =

(
(1 − 𝑠) − 𝐵

𝐾
+ 𝑟𝑠

)
is the true negative rate of the shortlister. This gives us

Δ(Θ̂ | S) =
(
FPR · ln 1

𝜂
+ TNR · ln 1

1 − 𝜂

)
· 𝑁𝐿

It is easy to see that the optimal value of 𝜂 for the above expression is 𝜂 = FPR

FPR+TNR . For example, in the LF-WikiSeeAlsoTitles-320K dataset,

which has 𝑠 ≈ 6.75 × 10
−6, 𝑟 ≈ 0.85, 𝐵 = 160, 𝐾 = 2

17
, this gives a value of FPR ≈ 1.01 × 10

−6,TNR ≈ 0.999 which gives 𝜂 ≈ 1.01 × 10
−6
.

This confirms that the augmentation indeed does not interfere with the prediction pipeline and labels not shortlisted can be safely ignored.

However, moving on and plugging this optimal value of 𝜂 into the expression tells us that

Δ(Θ̂ | S) =
(
FPR

TNR

ln

(
1 + TNR

FPR

)
+ ln

(
1 + FPR

TNR

))
· 𝑁𝐿.

Since TNR → 1 (for example, we saw TNR ≈ 0.999 above), we simplify this to
FPR

TNR
= O (FPR) and use the inequality ln(1 + 𝑣) ≤ 𝑣 for

all 𝑣 > 0 to conclude that Δ(Θ̂ | S) ≤ O
(
FPR ln

1

FPR
+ FPR

)
= O

(
𝑠 (1 − 𝑟 ) ln

(
1

𝑠 (1−𝑟 )

))
. Using Δ(Θ∗ | S) ≥ 0 settles the second term in the

decomposition by establishing that Δ(Θ̂ | S) − Δ(Θ∗ | S) ≤ O
(
𝑠 (1 − 𝑟 ) ln

(
1

𝑠 (1−𝑟 )

))
· 𝑁𝐿. Combining the two terms in the decomposition

above gives us

L(Θ̂) − L(Θ∗) = 1

𝑁𝐿

(
𝑁𝐿𝐵

𝐾
· ( ˜L(Θ | S) − ˜L(Θ∗ | S)) + (Δ(Θ | S) − Δ(Θ∗ | S))

)
≤ O

(
𝑠 (1 − 𝑟 ) ln

(
1

𝑠 (1 − 𝑟 )

))
,

which finishes the proof of the theorem.

We conclude this discussion by noting that since L and
˜L are non-convex objectives due to the non-linear architecture encoded by the

model parameters Θ, it may not be able to solve these objectives optimally in practice. Thus, in practice, all we may be ensure is that

˜L(Θ̂ | S) ≤ min

Θ
˜L(Θ | S) + 𝜖opt

where 𝜖opt is the sub-optimality in optimizing the objective
˜L due to factors such as sub-optimal initialization, training, premature termination,

etc. It is easy to see that the main result of the theorem continues to hold since we now have
˜L(Θ̂ | S) ≤ ˜L(Θ∗ | S) + 𝜖opt which gives us the

modified result as follows

L(Θ̂) ≤ min

Θ
L(Θ) + O

(
𝑠 (1 − 𝑟 ) ln

(
1

𝑠 (1 − 𝑟 )

))
+ 𝐵

𝐾
𝜖opt .

A.2 Time Complexity Analysis for DECAF
In this section, we discuss the time complexity of the various modules in DECAF, as well as derive the prediction and training complexities.

Notation: Recall from Section 3 that DECAF learns 𝐷-dimensional representations for all 𝑉 tokens (e𝑡 , 𝑡 ∈ [𝑉 ]), that are used to create

embeddings for all 𝐿 labels ẑ1
𝑙
, 𝑙 ∈ [𝐿], and all 𝑁 training documents x̂𝑖 , 𝑖 ∈ [𝑁 ]. We introduce some additional notation to facilitate the

discussion: we use 𝑉𝑥 to denote the average number of unique tokens present in a document i.e. 𝑉𝑥 = 1

𝑁

∑𝑁
𝑖=1 ∥x𝑖 ∥0 where ∥·∥

0
is the

sparsity “norm” that gives the number of non-zero elements in a vector. We similarly use 𝑉𝑦 = 1

𝐿

∑𝐿
𝑙=1

∥z𝑙 ∥0 to denote the average number

of tokens in a label text. Let �̂� = 1

𝑁

∑𝑁
𝑖=1 ∥y𝑖 ∥0 denote the average number of labels per document and also let �̂� = 𝑁�̂�

𝐿
denote the average

number of documents per label. We also let𝑀 denote the mini-batch size (DECAF used𝑀 = 255 for all datasets – see Table 8).

Embedding Block: Given a text with 𝑉 tokens, the embedding block requires 𝑉𝐷 operations to aggregate token embeddings and

𝐷2 + 3𝐷 operations to execute the residual block and the combination block, for a total of O
(
𝑉𝐷 + 𝐷2

)
operations. Thus, to encode a label

(respectively document) text, it takes O
(
𝑉𝑦𝐷 + 𝐷2

)
(respectively O

(
𝑉𝑥𝐷 + 𝐷2

)
) operations on average.

Prediction: Given a test document, assuming that it contain 𝑉𝑥 tokens, embedding takes O
(
𝑉𝑥𝐷 + 𝐷2

)
operations, executing the

shortlister by identifying the top 𝐵 clusters takes O (𝐾𝐷 + 𝐾 log𝐾) operations. These clusters contain a total of
𝐿𝐵
𝐾

labels. The ranker takes

O
(
𝐿𝐵
𝐾
𝐷 + 𝐿𝐵

𝐾
log

(
𝐿𝐵
𝐾

))
operations to execute the

𝐿𝐵
𝐾

OvA linear models corresponding to these shortlisted labels to obtain the top-ranked

predictions. Thus, prediction takes O
(
𝑉𝑥𝐷 + 𝐷2 + 𝐾𝐷 + 𝐾 log𝐾

)
= O (𝐾𝐷) time since usually

𝐿𝐵
𝐾

≤ 𝐾,𝑉𝑥 ≤ 𝐾 and log𝐾 ≤ 𝐷 ≤ 𝐾 .



Module I Training: Creation of all 𝐿 label centroids c𝑙 takes O
(
𝐿�̂�𝑉𝑥

)
time. These centroids are O

(
�̂�𝑉𝑥

)
-sparse on average. Clustering

these labels using hierarchical balanced binary clustering for log𝐾 levels to get 𝐾 balanced clusters takes time O
(
𝐿�̂�𝑉𝑥 log𝐾

)
. Computing

meta label text representations u𝑚 for all meta labels takes O
(
𝐿𝑉𝑦

)
time. The vectors u𝑚 are

�̂�𝑦𝐿

𝐾
-sparse on average. To compute the

complexity of learning the 𝐾 OvA meta-classifiers, we calculate below the cost of a single back-propagation step when using a mini-batch

of size 𝑀 . Computing the document and meta-label features of all 𝑀 documents in the mini-batch and 𝐾 meta-labels takes on average

O
(
(𝐷2 +𝑉𝑥𝐷)𝑀

)
and O

((
𝐷2 + �̂�𝑦𝐿

𝐾
· 𝐷

)
𝐾

)
time respectively. Computing the scores for all the OvA meta classifiers for all documents in

the mini-batch takes O (𝑀𝐾𝐷) time. Overestimating that the 𝐾 meta label texts together cover all 𝑉 tokens, updating the residual layer

parameters R, the combination block parameters, and the token embeddings E using back-propagation takes at most O
(
(𝐷2 +𝑉 )𝑀𝐾

)
time.

Module II Training: Recreating all 𝐿 label centroids c𝑙 now takes O
(
𝐿�̂�𝑉𝑥𝐷

)
time. Clustering the labels takes time O (𝐿𝐷 log𝐾).

Computing document features in a mini-batch of size𝑀 takes O
(
(𝑉𝑥𝐷 + 𝐷2)𝑀

)
time as before. Computing the meta-label representations

û1𝑚 for all 𝐾 meta-labels now takes O
(
(𝑉𝑦𝐷 + 𝐷2)𝐿

)
time. Computing the scores for all the OvA meta classifiers for all documents in the

mini-batch takes O (𝑀𝐾𝐷) time as before. Next, updating the model parameters as well as the refinement vectors û2𝑚,𝑚 ∈ [𝐾] takes at most

O
(
(𝐷2 +𝑉 )𝑀𝐾

)
time time as before. The added task of updating û2𝑚 does not affect the asymptotic complexity of this module. Generating

the shortlists for all 𝑁 training points is essentially a prediction step and takes O (𝑁𝐾𝐷) time.

Module II Initializations: Model parameter initializations take O
(
𝐷2

)
time. Initializing the refinement vectors ẑ2

𝑙
takes O

(
𝐿𝑉𝑦𝐷

)
time.

Module IV Training: Given the shortlist of 𝐿𝐵/𝐾 labels per training point generated in Module II, training the OvA classifiers by fine-

tuning themodel parameters and learning the refinement vectors ẑ2
𝑙
, 𝑙 ∈ [𝐿] is mademuch less expensive thanO (𝑁𝐿𝐷). Computing document

features in a mini-batch of size𝑀 takes O
(
(𝑉𝑥𝐷 + 𝐷2)𝑀

)
time as before. However, label representations ẑ1

𝑙
of only shortlisted labels need be

computed. Since there are atmost

(
𝐿𝐵
𝐾

+ �̂�
)
𝑀 of them (accounting for hard negatives and all positives), this takes O

(
(𝑉𝑦𝐷 + 𝐷2)𝑀

(
𝐿𝐵
𝐾

+ �̂�
))

time. Next, updating themodel parameters as well as the refinement vectors ẑ2
𝑙
for shortlisted takes at mostO

(
(𝐷2 + (𝑉𝑥 +𝑉𝑦)𝐷)𝑀

(
𝐿𝐵
𝐾

+ �̂�
))

time. This can be simplified to O
(
𝑀

(
𝐿𝐵
𝐾

+ �̂�
)
𝐷2

)
= O

(
𝑀𝐷2

log
2 𝐿

)
time per mini-batch since 𝑉𝑥 ,𝑉𝑦 ≤ 𝐷 , usually �̂� ≤ O (log𝐿) and

DECAF chooses
𝐵
𝐾

≤ O
(
log

2 𝐿

𝐿

)
for large datasets such as LF-AmazonTitles-1.3M and LF-P2PTitles-2M (see Table 8), thus ensuring an OvA

training time that scales at most as log
2 𝐿 with the number of labels.

A.3 Dataset Preparation and Evaluation Details
Train-test splits were generated using a random 70:30 split keeping only those labels that have at least 1 test as well as 1 train point. For sake

of validation, 5% of training data points were randomly sampled.

Reciprocal pair removal: It was observed that in certain datasets, documents were mapped to themselves. For instance, the product with

title “Dinosaur” was tagged with the label “Dinosaur” itself in the LF-AmazonTitles-131K dataset. Algorithms could achieve disproportionately

high P@1 by making such trivial predictions without learning anything useful. Additionally, in product-to-product and related webpage

recommendation tasks, both documents and labels come from the same set/universe. This allows for reciprocal pairs to exist where a

data point has document A and label B in its ground truth but a separate data point has document B and label A in its ground truth. We

affectionately call these AB and BA pairs respectively. If these pairs are split across train and test sets, an algorithm could simply memorize

the AB pair while training and predict the BA pair during testing to achieve very high P@1. Moreover, such predictions did not add to

the quality of predictions in real-life applications. Hence, methods were not rewarded for making such trivial predictions. Table 1 reports

numbers as per this very evaluation strategy. Additionally, coverage (C@20) is reported in Table 2 to verify that prediction accuracy is not

being achieved at the expense of label coverage.

A.4 Evaluation metrics
Performance was evaluated using precision@𝑘 and nDCG@𝑘 metrics. Performance was also evaluated using propensity scored metrics,

namely propensity scored precision@𝑘 and nDCG@𝑘 (with 𝑘 = 1, 3 and 5) for extreme classification. The propensity scoring model and

values available on The Extreme Classification Repository [4] were used for the publicly available datasets. For the proprietary datasets, the

method outlined in [15] was used. For a predicted score vector ŷ ∈ 𝑅𝐿 and ground truth label vector y ∈ {0, 1}𝐿 , the metrics are defined

below. In the following, 𝑝𝑙 is propensity score of the label 𝑙 as proposed in [15].

𝑃@𝑘 =
1

𝑘

∑
𝑙 ∈𝑟𝑎𝑛𝑘𝑘 (ŷ)

𝑦𝑙 𝑃𝑆𝑃@𝑘 =
1

𝑘

∑
𝑙 ∈𝑟𝑎𝑛𝑘𝑘 (ŷ)

𝑦𝑙

𝑝𝑙



𝐷𝐶𝐺@𝑘 =
1

𝑘

∑
𝑙 ∈𝑟𝑎𝑛𝑘𝑘 (ŷ)

𝑦𝑙

log(𝑙 + 1) 𝑃𝑆𝐷𝐶𝐺@𝑘 =
1

𝑘

∑
𝑙 ∈𝑟𝑎𝑛𝑘𝑘 (ŷ)

𝑦𝑙

𝑝𝑙 log(𝑙 + 1)

𝑛𝐷𝐶𝐺@𝑘 =
𝐷𝐶𝐺@𝑘∑min(𝑘, | |y | |0)

𝑙=1
1

log(𝑙+1)

𝑃𝑆𝑛𝐷𝐶𝐺@𝑘 =
𝑃𝑆𝐷𝐶𝐺@𝑘∑𝑘
𝑙=1

1

log 𝑙+1
,

A.5 Further Details about Experiments and Ablation Studies
Recap of Notation: Let us recall from Section 3, that 𝐿 denotes the number of labels and 𝑉 denotes the total number of tokens appearing

across label and document texts. The training set of 𝑁 documents is presented as

{
(x𝑖 , y𝑖 )𝑁𝑖=1

}
with each document represented as a bag

of tokens x𝑖 ∈ R𝑉 with 𝑥𝑖𝑡 representing the TF-IDF weight of token 𝑡 ∈ [𝑉 ] in the 𝑖th document, and the ground truth label vector

y𝑖 ∈ {−1, +1}𝐿 such that 𝑦𝑖𝑙 = +1 if label 𝑙 ∈ [𝐿] is relevant to document 𝑖 and 𝑦𝑖𝑙 = −1 otherwise. For each label 𝑙 ∈ [𝐿], its label text is
similarly represented as a bag of TF-IDF scores z𝑙 ∈ R𝑉 . DECAF learns 𝐷-dimensional embeddings for tokens, documents as well as labels.

Incorporating Label text into existing BoW XML methods: XML classifiers such as Parabel, DiSMEC, Bonsai, etc, use a fixed BoW

(bag-of-words)-based representation of documents to learn their classifiers. Label text was incorporated into these classifiers as follows: for

every document 𝑖 , let 𝑠𝑖𝑙 ∈ R be the relevance score the XML classifier predicted for label 𝑙 for document 𝑖 . We augmented this score to

incorporate label text by computing 𝑠𝑖𝑙 = 𝛼 · 𝑠𝑖𝑙 + (1 − 𝛼)𝜎 (⟨x𝑖 , z𝑙 ⟩). Here, 𝛼 ∈ [0, 1] was fine tuned to offer the best results. Table 4 shows

that incorporating label text, even in this relatively crude way, still benefits accuracy.

Generating alternative shortlists for DECAF: DECAF learns a shortlister to generate a subset of labels with high recall, from an

extremely large output space. Experiments were also conducted to use existing scalable XML algorithms e.g. Parabel or ANNS data structures
e.g. HNSW as possible alternatives to generating this shortlist. Label centroids using learnt intermediate feature representations were

provided to Parabel and HNSW in order to partition the label space. However, as Table 5 shows, this leads to significant reduction in precision

as well as recall (upto 2%) which adversely impacted the performance of the final ranking by DECAF.
Varying the shortlister fan-out in DECAF: DECAF uses Modules I and II to learn a shortlister. In Module I, DECAF clusters the

extremely large label space (in millions) to a smaller number of 𝐾 = 2
17 ≈ 130𝐾 meta-labels. In Module II, DECAF fine-tunes the re-ranker to

generate a shortlist of labels. For details of training please refer to section 3 in the main paper. Experiments were conducted to observe the

impact of the fan-out 𝐾 . In particular fan-out was restricted to 2
13 ≈ 8𝐾 which is also a value used by contemporary algorithms such as

AttentionXML and the X-Transformer. It was observed that to maintain a high recall (of around 85%) during training DECAF had to increase

the beam-size by 2× which leads to increase in training time as well as a drop in accuracy (see Table 6 DECAF-8K). AttentionXML and

X-Transformer were found to be computationally expensive and could not be scaled to use 2
17

clusters to check whether increasing fan-out

benefits them as it does DECAF.
Varying the label classifier components in DECAF: As outlined in Section 3, DECAF makes crucial use of label text embeddings

while learning its label classifiers w𝑙 , 𝑙 ∈ [𝐿], with two components for each label 𝑙 a) ẑ1
𝑙
that is simply the label text embedding, and b) ẑ2

𝑙

that is a refinement vector. ẑ2
𝑙
was initialized with Ez𝑙 and then fine-tuned jointly with other model parameters such as those within the

residual and combination blocks, etc. An experiment was conducted in which the label embedding component ẑ1
𝑙
was removed from the

label classifier (effectively done by setting ẑ1
𝑙
= 0,∀𝑙 ∈ [𝐿]) and ẑ2

𝑙
was randomly initialized instead. We call this configuration DECAF-ẑ2

(see Table 6). Another experimented was conducted to understand the importance of the refinement vector ẑ2
𝑙
. In this experiment, ẑ2

𝑙
was

explicitly set to 0 and we used w𝑙 = ẑ1
𝑙
. We call this configuration DECAF-ẑ1 (see Table 6).DECAF was found to be upto 5% more accurate

as compared to these variants. These experiments suggest that the novel combination of two label classifier components as proposed by

DECAF, namely ẑ1
𝑙
and ẑ2

𝑙
is essential for achieving high accuracy.

Please go to the next page for dataset statistics and hyperparameter details.



Table 7: Dataset Statistics. A ‡ sign denotes information that was redacted for the proprietary datasets. The first four rows
are public short-text datasets. The next three rows are public full-text versions of the first three rows. The last two rows
are proprietary short-text datasets. Dataset names with an asterisk ∗ next to them correspond to product-to-category tasks
whereas others correspond to product-to-product tasks.

Dataset Train Documents
𝑁

Labels
𝐿

Tokens
𝑉

Test Instances
𝑁 ′

Average Labels
per Document

Average Points
per label

Average Tokens
per Document

Average Tokens
per Label

Short text dataset statistics

LF-AmazonTitles-131K 294,805 131,073 40,000 134,835 2.29 5.15 7.46 7.15

LF-WikiSeeAlsoTitles-320K 693,082 312,330 40,000 177,515 2.11 4.68 3.97 3.92

LF-WikiTitles-500K
∗

1,813,391 501,070 80,000 783,743 4.74 17.15 3.72 4.16

LF-AmazonTitles-1.3M 2,248,619 1,305,265 128,000 970,237 22.20 38.24 9.00 9.45

Long text dataset statistics

LF-Amazon-131K 294,805 131,073 80,000 134,835 2.29 5.15 64.28 4.87

LF-WikiSeeAlso-320K 693,082 312,330 200,000 177,515 2.11 4.67 99.79 2.68

LF-Wikipedia-500K
∗

1,813,391 501,070 500,000 783,743 4.74 17.15 165.18 3.24

Proprietary dataset

LF-P2PTitles-300K 1,366,429 300,000 ‡ 585,602 ‡ ‡ ‡ ‡
LF-P2PTitles-2M 2,539,009 1,640,898 ‡ 1,088,146 ‡ ‡ ‡ ‡

Table 8: Parameter settings for DECAF on different datasets. Apart from the hyperparameters mentioned in the table below,
all other hyperparameters were held constant across datasets. All ReLU layers were followed by a dropout layer with 50%
drop-rate in Module-I and 20% for the rest of the modules. Learning rate was decayed by a decay factor of 0.5 after interval
0.5× epoch length. Batch size was taken to be 255 for all datasets. Module I used 20 epochs with initial learning rate of 0.01. In
Module II, 10 epochs were used with an initial learning rate of 0.008 for all datasets.

Dataset Beam
Size

Embedding
Dimension

Cluster
Size

LF-AmazonTitles-131K 200 300 2
15

LF-WikiSeeAlsoTitles-320K 160 300 2
17

LF-AmazonTitles-1.3M 100 512 2
17

LF-Amazon-131K 200 512 2
15

LF-WikiSeeAlso-320K 160 512 2
17

LF-P2PTitles-300K 160 300 2
17

LF-P2PTitles-2M 40 512 2
17

LF-WikiTitles-500K 100 512 2
17

LF-Wikipedia-500K 100 512 2
17

Please go to the next page for detailed experimental results.



Table 9: A comparison of DECAF on publicly available product-to-product datasets. The first 3 rows are short-text datasets
whereas the last two rows are long-text versions of the first two. DECAF offers predictions that are the most accurate based
on all evaluation metrics, and an order of magnitude faster as compared to existing deep learning based approaches. Methods
marked with a ‘-’ sign could not be scaled for the given dataset within the available resources.

Dataset Method P@1 P@3 P@5 N@3 N@5 PSP@1 PSP@3 PSP@5 PSN@3 PSN@5 Model
Size (GB)

Training
Time (hr)

Prediction
Time (ms)

LF
-A

m
az
on

T
it
le
s-
13

1K

DECAF 38.4 25.84 18.65 39.43 41.46 30.85 36.44 41.42 34.69 37.13 0.81 2.16 0.1

Astec 37.12 25.2 18.24 38.17 40.16 29.22 34.64 39.49 32.73 35.03 3.24 1.83 2.34

AttentionXML 32.25 21.7 15.61 32.83 34.42 23.97 28.6 32.57 26.88 28.75 2.61 20.73 5.19

MACH 33.49 22.71 16.45 34.36 36.16 24.97 30.23 34.72 28.41 30.54 2.35 3.3 0.23

X-Transformer 29.95 18.73 13.07 28.75 29.6 21.72 24.42 27.09 23.18 24.39 - - 15.38

Siamese 13.81 8.53 5.81 13.32 13.64 13.3 12.68 13.36 12.69 13.06 0.6 6.92 0.2

Parabel 32.6 21.8 15.61 32.96 34.47 23.27 28.21 32.14 26.36 28.21 0.34 0.03 0.69

Bonsai 34.11 23.06 16.63 34.81 36.57 24.75 30.35 34.86 28.32 30.47 0.24 0.1 7.49

DiSMEC 35.14 23.88 17.24 36.17 38.06 25.86 32.11 36.97 30.09 32.47 0.11 3.1 5.53

PfastreXML 32.56 22.25 16.05 33.62 35.26 26.81 30.61 34.24 29.02 30.67 3.02 0.26 2.32

XT 31.41 21.39 15.48 32.17 33.86 22.37 27.51 31.64 25.58 27.52 0.84 9.46 9.12

Slice 30.43 20.5 14.84 31.07 32.76 23.08 27.74 31.89 26.11 28.13 0.39 0.08 1.58

AnneXML 30.05 21.25 16.02 31.58 34.05 19.23 26.09 32.26 23.64 26.6 1.95 0.08 0.11

LF
-W

ik
iS
ee
A
ls
oT

it
le
s-
32

0K

DECAF 25.14 16.9 12.86 24.99 25.95 16.73 18.99 21.01 19.18 20.75 1.76 11.16 0.09

Astec 22.72 15.12 11.43 22.16 22.87 13.69 15.81 17.5 15.56 16.75 7.3 4.17 2.67

AttentionXML 17.56 11.34 8.52 16.58 17.07 9.45 10.63 11.73 10.45 11.24 6.02 56.12 7.08

MACH 18.06 11.91 8.99 17.57 18.17 9.68 11.28 12.53 11.19 12.14 2.51 8.23 0.52

X-Transformer - - - - - - - - - - - - -

Siamese 10.69 6.28 4.51 9.79 9.91 10.1 9.43 9.59 10.22 10.47 0.67 11.58 0.17

Parabel 17.68 11.48 8.59 16.96 17.44 9.24 10.65 11.8 10.49 11.32 0.6 0.07 0.8

Bonsai 19.31 12.71 9.55 18.74 19.32 10.69 12.44 13.79 12.29 13.29 0.37 0.37 14.82

DiSMEC 19.12 12.93 9.87 18.93 19.71 10.56 13.01 14.82 12.7 14.02 0.19 15.56 11.02

PfastreXML 17.1 11.13 8.35 16.8 17.35 12.15 12.51 13.26 12.81 13.48 6.77 0.59 2.59

XT 17.04 11.31 8.6 16.61 17.24 8.99 10.52 11.82 10.33 11.26 - 5.28 12.86

Slice 18.55 12.62 9.68 18.29 19.07 11.24 13.45 15.2 13.03 14.23 0.94 0.2 1.85

AnneXML 16.3 11.24 8.84 16.19 17.14 7.24 9.63 11.75 9.06 10.43 4.22 0.21 0.13

LF
-A

m
az
on

T
it
le
s-
1.
3M

DECAF 50.67 44.49 40.35 48.05 46.85 22.07 26.54 29.3 25.06 26.85 9.62 74.47 0.16

Astec 48.82 42.62 38.44 46.11 44.8 21.47 25.41 27.86 24.08 25.66 26.66 18.54 2.61

AttentionXML 45.04 39.71 36.25 42.42 41.23 15.97 19.9 22.54 18.23 19.6 28.84 380.02 29.53

MACH 35.68 31.22 28.35 33.42 32.27 9.32 11.65 13.26 10.79 11.65 7.68 60.39 2.09

X-Transformer - - - - - - - - - - - - -

Siamese - - - - - - - - - - - - -

Parabel 46.79 41.36 37.65 44.39 43.25 16.94 21.31 24.13 19.7 21.34 11.75 1.5 0.89

Bonsai 47.87 42.19 38.34 45.47 44.35 18.48 23.06 25.95 21.52 23.33 9.02 7.89 39.03

DiSMEC - - - - - - - - - - - - -

PfastreXML 37.08 33.77 31.43 36.61 36.61 28.71 30.98 32.51 29.92 30.73 29.59 9.55 23.64

XT 40.6 35.74 32.01 38.18 36.68 13.67 17.11 19.06 15.64 16.65 7.9 82.18 5.94

Slice 34.8 30.58 27.71 32.72 31.69 13.8 16.87 18.89 15.62 16.74 5.98 0.79 1.45

AnneXML 47.79 41.65 36.91 44.83 42.93 15.42 19.67 21.91 18.05 19.36 14.53 2.48 0.12

LF
-A

m
az
on

-1
31

K

DECAF 42.94 28.79 21 44.25 46.84 34.52 41.14 47.33 39.35 42.48 1.86 1.8 0.1

Astec - - - - - - - - - - - - -

AttentionXML 42.9 28.96 20.97 44.07 46.44 32.92 39.51 45.24 37.49 40.33 5.04 50.17 12.33

MACH 34.52 23.39 17 35.53 37.51 25.27 30.71 35.42 29.02 31.33 4.57 13.91 0.25

X-Transformer - - - - - - - - - - - - -

Bonsai 40.23 27.29 19.87 41.46 43.84 29.6 36.52 42.39 34.43 37.34 0.46 0.4 7.41

DiSMEC 41.68 28.32 20.58 43.22 45.69 31.61 38.96 45.07 36.97 40.05 0.45 7.12 15.48

PfastreXML 35.83 24.35 17.6 36.97 38.85 28.99 33.24 37.4 31.65 33.62 0.01 1.54 3.32

XT 34.31 23.27 16.99 35.18 37.26 24.35 29.81 34.7 27.95 30.34 0.92 1.38 7.42

Slice 32.07 22.21 16.52 33.54 35.98 23.14 29.08 34.63 27.25 30.06 0.39 0.11 1.35

AnneXML 35.73 25.46 19.41 37.81 41.08 23.56 31.97 39.95 29.07 33 4.01 0.68 0.11

LF
-W

ik
iS
ee
A
ls
o-
32

0K

DECAF 41.36 28.04 21.38 41.55 43.32 25.72 30.93 34.89 30.69 33.69 4.84 13.4 0.09

Astec - - - - - - - - - - - - -

AttentionXML 40.5 26.43 19.87 39.13 40.26 22.67 26.66 29.83 26.13 28.38 7.12 90.37 12.6

MACH 27.18 17.38 12.89 26.09 26.8 13.11 15.28 16.93 15.17 16.48 11.41 50.22 0.54

X-Transformer - - - - - - - - - - - - -

Bonsai 34.86 23.21 17.66 34.09 35.32 18.19 22.35 25.66 21.62 23.84 0.84 1.39 8.94

DiSMEC 34.59 23.58 18.26 34.43 36.11 18.95 23.92 27.9 23.04 25.76 1.28 58.79 75.52

PfastreXML 28.79 18.38 13.6 27.69 28.28 17.12 18.19 19.43 18.23 19.2 14.02 4.97 2.68

XT 30.1 19.6 14.92 28.65 29.58 14.43 17.13 19.69 16.37 17.97 2.2 3.27 4.79

Slice 27.74 19.39 15.47 27.84 29.65 13.07 17.5 21.55 16.36 18.9 0.94 0.2 1.18

AnneXML 30.79 20.88 16.47 30.02 31.64 13.48 17.92 22.21 16.52 19.08 12.13 2.4 0.11



Table 10: A comparison of DECAF’s performance on product-to-category datasets. The first row is a short-text dataset and
the second row its long-text counterpart. AlthoughDECAF focuses on product-to-product tasks, it is nevertheless competitive
in terms of accuracy, as well as an order of magnitude faster in prediction as compared to leading deep learning approaches.
Methods marked with a ‘-’ sign could not be scaled for the given dataset within the available resources. The AttentionXML
method used a non-standard version of the Wikipedia-500K dataset. All other methods, including DECAF, used the standard
version of the dataset.

Dataset Method P@1 P@3 P@5 N@3 N@5 PSP@1 PSP@3 PSP@5 PSN@3 PSN@5 Model
Size (GB)

Training
Time (hrs)

Prediction
Time (ms)

LF
-W

ik
iT
it
le
s-
50

0K

DECAF 44.21 24.64 17.36 33.55 31.92 19.29 19.82 19.96 21.26 22.95 4.53 42.26 0.09

Astec-3 44.4 24.69 17.49 33.43 31.72 18.31 18.25 18.56 19.57 21.09 15.01 13.5 2.7

AttentionXML 40.9 21.55 15.05 29.38 27.45 14.8 13.97 13.88 15.24 16.22 14.01 133.94 9

MACH 37.74 19.11 13.26 26.63 24.94 13.71 12.14 12 13.63 14.54 4.73 22.46 0.8

X-Transformer - - - - - - - - - - - - -

Siamese - - - - - - - - - - - - -

Parabel 40.41 21.98 15.42 29.89 28.15 15.55 15.32 15.35 16.5 17.66 2.7 0.42 0.81

Bonsai 40.97 22.3 15.66 30.35 28.65 16.58 16.34 16.4 17.6 18.85 1.63 2.03 17.38

DiSMEC 39.42 21.1 14.85 28.87 27.29 15.88 15.54 15.89 16.76 18.13 0.68 48.27 11.71

PfastreXML 35.71 19.27 13.64 26.45 25.15 18.23 15.42 15.08 17.34 18.24 20.41 3.79 9.37

XT 38.19 20.74 14.68 28.15 26.64 14.2 14.14 14.41 15.18 16.45 3.1 8.78 7.56

Slice 25.48 15.06 10.98 20.67 20.52 13.9 13.33 13.82 14.5 15.9 2.3 0.74 1.76

AnneXML 39 20.66 14.55 28.4 26.8 13.91 13.38 13.75 14.63 15.88 11.18 1.98 0.13

LF
-W

ik
ip
ed

ia
-5
00

K

DECAF 73.96 54.17 42.43 66.31 64.81 32.13 40.13 44.59 39.57 43.7 9.34 44.23 0.09

Astec - - - - - - - - - - - - -

AttentionXML 82.73 63.75 50.41 76.56 74.86 34 44.32 50.15 42.99 47.69 9.73 221.6 12.38

MACH 52.48 31.93 23.34 41.7 39.43 17.92 18.16 18.66 19.45 20.77 28.12 220.07 0.82

X-Transformer - - - - - - - - - - - - -

Siamese - - - - - - - - - - - 0.03 -

Parabel 70.14 50.62 39.45 61.86 59.89 27.25 32.52 35.93 32.29 35.31 5.51 3.02 2.01

Bonsai 70.56 51.11 39.86 62.47 60.61 28.18 33.86 37.55 33.58 36.86 3.94 17.22 22.23

DiSMEC - - - - - - - - - - - - -

PfastreXML 61.24 41.59 31.75 52.26 50.34 33.3 32.56 33.67 33.77 35.25 48.26 24.71 7.69

XT 66.98 48.33 37.82 58.94 57.19 24.78 30.06 33.46 29.63 32.51 3.9 16.73 3.81

Slice 47.51 32.34 25.07 40.56 39.51 19.6 21.99 24.6 22.2 24.53 2.3 0.67 1.58

AnneXML 64.77 43.24 32.79 54.63 52.51 24.08 28.25 31.2 28.47 31.3 49.25 14.97 5.15

Table 11: A comparison of DECAF’s performance on the proprietary datasets. DECAF can be an order of magnitude faster in
prediction as compared to existing deep learning approaches.

Dataset Method P@1 P@3 P@5 N@3 N@5 PSP@1 PSP@3 PSP@5 PSN@3 PSN@5

P2
PT
itl
es
-30
0K

DECAF 47.17 30.67 22.69 53.62 57.06 42.43 55.07 62.3 49.86 53.27
Astec 44.3 28.95 21.56 50.36 53.67 39.44 50.9 57.83 45.99 49.12

Parabel 43.14 28.34 20.99 48.73 51.75 37.26 48.87 55.32 43.45 46.32

PfastreXML 39.4 25.6 18.77 44.59 46.98 35.79 45.13 49.9 40.98 43.03

Slice 31.27 28.91 25.19 31.5 33.2 27.03 30.44 34.95 28.54 30.77

P2
PT
itl
es
-2M

DECAF 40.27 36.65 31.45 40.4 42.49 36.65 40.14 45.15 38.23 40.99
Astec 36.34 33.33 28.74 36.63 38.63 32.75 36.3 41 34.43 36.97

Parabel 35.26 32.44 28.06 35.3 36.89 30.21 33.85 38.46 31.63 33.71

PfastreXML 30.52 28.68 24.6 31.5 33.23 28.84 32.1 35.65 30.56 32.52

Slice 31.27 28.91 25.19 31.5 33.2 27.03 30.44 34.95 28.54 30.77



Table 12: A subjective comparison of DECAF’s prediction quality as compared to state-of-the-art deep learning, as well as BoW
approaches on examples taken from the test sets of two datasets. Predictions in black color in non-bold/non-italic font were
a part of the ground truth. Predictions in bold italics were such that their co-occurrence with other ground truth labels in the
test set was novel, i.e. those co-occurences were never seen in the training set. Predictions in light gray color were not a part
of the ground truth. DECAF offers much more precise recommendations on these examples as compared to other methods,
for example AttentionXML, whose predictions on the last example are mostly irrelevant, e.g. focusing on labels such as “Early
United States commemorative coins”, instead of those related to the New Zealand dollar. DECAF is able to predict labels that
never co-occur in the training set due to its inclusion of label text in to the classifier. For example, in the last example, the label
“Australian dollar” never occurred with the other ground truth labels in the training set i.e. had no common training instances
with the rest of the ground truth labels. Similarly, in the first example, the label “PanzerDragoonOrta” never occurred together
with other ground truth labels yet DECAF predicted these labels correctly while the other XML algorithms could not do so.

Algorithm Predictions

LF-AmazonTitles-131K

Document Panzer Dragoon Zwei

DECAF Panzer Dragoon, Action Replay Plus, Sega Saturn System - Video Game Console, The Legend of Dragoon

, Panzer Dragoon Orta

Astec Guns of the Wehrmacht 1933-1945 (2006), Mission Barbarossa, Stug III & IV-Assault Guns, Tiger: Heavy

Tank Panzer VI, Blitzkrieg

Bonsai Playstation 1 Memory Card (1 MB), Mission Barbarossa, PlayStation 2 Memory Card (8MB), The Legend

of Dragoon, Blitzkrieg

MACH Mission Barbarossa, German Military Vehicles, Guns of the Wehrmacht 1933-1945 (2006), Stug III & IV -

Assault Guns, Panther - The Panzer V (2006)

AttentionXML Panther - The Panzer V (2006), Mission Barbarossa, German Military Vehicles, Stug III & IV - Assault

Guns, The Legend of Zelda: A Link to the Past

Slice Tiger: Heavy Tank Panzer VI, Stug III & IV - Assault Guns, Guns of the Wehrmacht 1933-1945 (2006),

German Military Vehicles, The Legend of Dragoon

Document Wagner - Die Walkure / Gambill, Denoke, Rootering, Behle, Jun, Vaughn, Zagrosek, Stuttgart
Opera

DECAF Wagner - Siegfried / West, Gasteen, Göhring, Schöne, Waag, Jun, Herrera, Zagrosek, Stuttgart Opera, Wag-

ner - Gotterdammerung / Bonnema, DeVol, Iturralde, Kapellmann, Bracht, Westbroek, Zagrosek, Stuttgart

Opera, Wagner - Der Fliegende Holländer (1986), Wagner - Gotterdammerung / Treleaven, Polaski,
Salminen, Struckmann, Matos, von Kannen, de Billy, Barcelona Opera (2005), Seligpreisung

Astec Lehar: Die lustige Witwe (2004) , Wagner - Der Fliegende Holländer (1986), Wagner: Der Ring des

Nibelungen - Complete Ring Cycle (Levine, Metropolitan Opera) (2002), Verdi: Macbeth (The Metropolitan

Opera HD Live Series) (2008), Richard Wagner - Der fliegende Holländer (2008)

Bonsai Puccini: Tosca (Royal Opera House 2011) (2012), Weisser Holunder, Wagner - Die Meistersinger von

Nurnberg / Heppner, Mattila, Morris, Pape, Allen, Polenzani, Levine, Metropolitan Opera, Wagner: Parsifal

/ Metropolitan Opera (1993), Un Giorno Di Regno (2010)

MACH Puccini: Tosca (Royal Opera House 2011) (2012), Puccini: La Boheme, The Main Event [ORIGINAL

RECORDINGS REMASTERED] 2CD SET, Super Mario World , Wagner - Gotterdammerung / Bonnema,

DeVol, Iturralde, Kapellmann, Bracht, Westbroek, Zagrosek, Stuttgart Opera

Parabel Wagner - Der Fliegende Holländer (1986), Die Meistersinger Von Nurnberg [Blu-ray] (2011), Un Giorno

Di Regno (2010), Puccini: La Boheme, Wagner - Die Meistersinger von Nurnberg / Heppner, Mattila,

Morris, Pape, Allen, Polenzani, Levine, Metropolitan Opera

AttentionXML Puccini: La Boheme, Verdi: Macbeth, Puccini: Tosca (Royal Opera House 2011) (2012), Tannhauser (2008) ,

Wagner - Gotterdammerung / Treleaven, Polaski, Salminen, Struckmann, Matos, von Kannen, de Billy,

Barcelona Opera (2005)



Slice Rossini - Semiramide / Conlon, Anderson, Horne, Metropolitan Opera (1991), Richard Wagner - Der

fliegende Holländer (2008) , Wagner - Der Fliegende Holländer (1986), Wagner - Gotterdammerung /

Jones, Mazura, Jung, Hubner, Becht, Altmeyer, Killebrew, Boulez, Bayreuth Opera (Boulez Ring Cycle Part

4) (2005), Rossini - Il Turco in Italia / Bartoli, Raimondi, Macias, Rumetz, Schmid, Welser-Most, Zurich

Opera (2004)

LF-WikiSeeAlsoTitles-320K

Document New Zealand dollar

DECAF Economy of New Zealand, Cook Islands dollar, Politics of New Zealand , Pitcairn Islands dollar, Aus-
tralian dollar

Astec Coins of the Australian dollar, List of banks in New Zealand, Constitution of New Zealand, Independence

of New Zealand, History of New Zealand

Bonsai Military history of New Zealand, History of New Zealand, Timeline of New Zealand history, Timeline of

the New Zealand environment, List of years in New Zealand

MACH Military history of New Zealand, History of New Zealand, List of years in New Zealand, Timeline of the

New Zealand environment, Timeline of New Zealand’s links with Antarctica

Parabel Early United States commemorative coins, Environment of New Zealand, Half dollar (United States coin),

History of New Zealand, Conservation in New Zealand

AttentionXML Coins of the Australian dollar, Early United States commemorative coins, Half dollar (United States coin),

Agriculture in New Zealand, Politics of New Zealand

Slice Timeline of New Zealand’s links with Antarctica, Coins of the Australian dollar, Early United States

commemorative coins, List of New Zealand state highways, Timeline of the New Zealand environment


