Implicit Feedback and Performance Evaluation in Recommender Systems

Shay Ben Elazar Mike Gartrell Noam Koenigstein Gal Lavee
Agenda

• Intro Universal Store Recommendations
• Extreme Classification with Matrix Factorization
• Offline Evaluation Techniques
• Online Evaluation
• The Gap
• Bridging The Gap...
Microsoft Universal Store Recommendations
Groove Music

Radio

Start with any artist, and we'll pick similar music for you.

Start a radio station

Junip
Kovacs
includes artists like EVA
Divat, Throwing Snow
Paul Nagules (2014-
08)
includes artists like Paul
Nagules, Jean-Jacques
Perrey
StyX
includes artists like The
Cramps, Reverend
Horror Hare
The Cramps
Tame Impala
Chase & Status
includes artists like High
Contrast, Danny Byrd

AC/DC
includes artists such as
Twisted Sister, Van
Helen
Marc Maron
includes artists like
Christian Finnegan,
Michael Showalter
Lee "Scratch" Perry
includes artists such as
Junior Marvin, Various
Artists
Calibre
includes artists such as
Electrical System, Atlantic
Connection
Skiniplec
includes artists such as
Knife Party, Flux Pavilion
Aerosmith
includes artists such as
Foreigner, ZZ Top
Iron Maiden
includes artists such as
Dio, Slayer
Xbox
Extreme Classification with Matrix Factorization
History: Netflix Prize
Two-class data – Extreme Classification
One-class data

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

...
Problem formulation

\[N \approx 10K \text{–} 1M \text{nodes} \]
\[M \approx 10 \text{–} 500M \text{nodes} \]

Bipartite graph \rightarrow We care about $? = \rho(link)$
Fully Bayesian model based on Variational Bayes optimization

Figure 2: The graphical model for observing graph G connecting M user with N item vertices. The prior on the hidden graph H is algorithmically determined to resemble the type of the observed graph.
Offline Evaluation Techniques
RMSE - Root Mean Square Error

$RMSE$ is computed by averaging the square error over all user item pairs, $(u, i) \in \mathcal{R}$

$$RMSE = \sqrt{\frac{1}{|\mathcal{R}|} \sum_{(u,i) \in \mathcal{R}} SE_{ui}}$$
wRMSE - Weighted Root Mean Square Error

This variant of RMSE is achieved by assigning each data point a weight, w_{ui}, based on its importance.

$$RMSE = \sqrt{\frac{1}{\sum w_{ui}} \sum_{(u,i) \in R} w_{ui} \cdot SE_{ui}}$$
Precision@k / Recall@k

$k = 3$

\[
\text{precision}@k = \frac{2}{3} \\
\text{recall}@k = \frac{2}{3}
\]
Mean Average Precision

We can plot precision as a function of recall

![Graph showing Recall v Precision and Average Precision]

- Ranking Induced by Algorithm
 - Positive Result 1
 - Negative Result
 - Positive Result 2
 - Positive Result 3
NDCG – Normalized Discounted Cumulative Gain

The relevance is discounted by $\gamma_i = \frac{1}{\log_2(i+1)}$ and the sum @ k is normalized by its upper bound – the $IDCG$

$$k = 3$$

$$DCG@k = \frac{1}{\log_2(1+1)} + 0 + \frac{5}{\log_2(3+1)} = 3.5$$

$$IDCG@k = \frac{5}{\log_2(1+1)} + \frac{3}{\log_2(2+1)} + \frac{1}{\log_2(3+1)} = 7.39$$

$$NDCG@k = \frac{3.5}{7.39} = 0.47$$

Ground Truth

Positive Result 1	Relevance: 5
Positive Result 2	Relevance: 3
Positive Result 3	Relevance: 1

Ranking Induced by Algorithm

| Positive Result 3 |
| Negative Result |
| Positive Result 1 |
| Positive Result 2 |
MPR - Mean Percentile Rank

Sometimes there is only one “positive” items in the test set...

\[
\text{Rank}_i = 3 \\
\text{MPR} = 0.5
\]
MPR in Xbox

(a) Xbox Movies
Spearman’s Rho Coefficient

In scenarios where we want to emphasize the full ranking we may compare the ranking of the algorithm to a reference ranking

<table>
<thead>
<tr>
<th>Ground Truth Ranking</th>
<th>Ranking Induced by Algorithm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Result 1</td>
<td>Result 1</td>
</tr>
<tr>
<td>Result 2</td>
<td>Result 3</td>
</tr>
<tr>
<td>Result 3</td>
<td>Result 4</td>
</tr>
<tr>
<td>Result 4</td>
<td>Result 1</td>
</tr>
</tbody>
</table>

\[r_1 - \hat{r}_1 = 1 - 3 \]
\[r_2 - \hat{r}_2 = 2 - 4 \]
\[r_3 - \hat{r}_3 = 3 - 1 \]
\[r_4 - \hat{r}_4 = 4 - 2 \]
Kendall’s Tau Coefficient

In scenarios where we want to emphasize the full ranking we may compare the ranking of the algorithm to a reference ranking.

\[
\text{sign}(r_1 - r_2) \cdot \text{sign}({\hat{r}}_1 - {\hat{r}}_2) = 1
\]
Offline Techniques – Open Questions

• How do we measure the importance/relevance of the positive items?
 • Long tail items are more important. But how do we quantify?
 • How many items do we care to recommend?

• Should the best item be the first item?
 • Maybe the best item should be in the middle?

• What about diversity?

• What about contextual effects?

• What about items fatigue?
Online Experimentation
Online Experiments

• Randomized controlled experiments
• Measure KPIs (Key Performance Indicator) directly
• Can compare several variants simultaneously
• The ultimate evaluation technique!
Online Experiments in Xbox
Game Purchase

Direct Purchases

LIFT

p-Value

Xbox360Game - Cumulative LIFT
Xbox360Game - Daily LIFT
Xbox360Game - p-Value
Experimentation Caveats

• What KPIs to measure?
• How long to run the experiment?
• External factors may influence the results
• Cannibalization is hard to account for
• Expensive to implement
• Can’t compare algorithms before “lighting up”
The Gap
Accuracy and Diversity Interactions
Characterizing The Offline / Online Evaluation Gap

• Overemphasis of popular items
• List recommendations (diversity, item position)
• Freshness/ Fatigue
• Contextual information is not fully utilized

• Learning from historical data lets you predict the future. But what we really care about is changing the future!
Bridging The Gap
Mitigating Evaluation Techniques

- Domain experts / focus groups
- Internal user studies
- Off-policy evaluation techniques
Off Policy Evaluation - Example

$V^\pi_h (S)$ - The expected reward of a policy h given data S from a “logging policy” π.

$$V^\pi_h (S) = \frac{1}{|S|} \sum_{(x,a,r) \in S} \frac{r \cdot \mathbb{1}[h(x) == a]}{\max(\hat{\pi}(x|a), \tau)}$$

where S denotes the set of context-action-reward tuples available in the logs
Caveats of Off-policy Evaluation

• Need to formulate everything in terms of a policy
• Needs sufficient support
• Becomes very difficult when your policies are time dependent
Thank you!

We are looking for postdoc researchers to join us in Israel...

Email: RecoRecruitmentEmail@microsoft.com