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Microsoft Universal Store Recommendations



Windows Store
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Xbox



Extreme Classification with Matrix 
Factorization



History: Netflix Prize
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Two-class data ςExtreme Classification
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One-class data
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Problem formulation
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Fully Bayesian model based on Variational
Bayes optimization



Offline Evaluation Techniques



ὙὓὛὉ- Root Mean Square Error

RMSEis computed by averaging the square error over all user item 
pairs,όȟὭᶰד
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ύὙὓὛὉ- Weighted Root Mean Square Error

This variant of RMSE is achieved by assigning each data point a 
weight,ύ ȟbased on its importance.

ὙὓὛὉ
ρ

Вύ
ȟ ɴד

ύ ẗὛὉ



Precision@Ὧ/ Recall@Ὧ
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We can plot precision as a function of recall
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The relevance is discounted by  and the sum @ k is 

normalized by its upper bound ςthe )ὈὅὋ

ὔὈὅὋςNormalized Discounted Cumulative 
Gain
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ὓὖὙ- Mean Percentile Rank 

{ƻƳŜǘƛƳŜǎ ǘƘŜǊŜ ƛǎ ƻƴƭȅ ƻƴŜ άǇƻǎƛǘƛǾŜέ ƛǘŜƳǎ ƛƴ ǘƘŜ ǘŜǎǘ ǎŜǘΧ
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MPR in Xbox



{ǇŜŀǊƳŀƴΩǎ wƘƻ /ƻŜŦŦƛŎƛŜƴǘ
In scenarios where we want to emphasize the full ranking we may 
compare the ranking of the algorithm to a reference ranking
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YŜƴŘŀƭƭΩǎ ¢ŀǳ /ƻŜŦŦƛŎƛŜƴǘ
In scenarios where we want to emphasize the full ranking we may 
compare the ranking of the algorithm to a reference ranking
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Offline Techniques ςOpen Questions

ÅHow do we measure the importance/ relevance of the positive items?
ÅLong tail items are more important. But how do we quantify?
ÅHow many items do we care to recommend? 

ÅShould the best item be the first item? 
ÅMaybe the best item should be in the middle?

ÅWhat about diversity?

ÅWhat about contextual effects?

ÅWhat about items fatigue? 



Online Experimentation



Online Experiments

ÅRandomized controlled experiments

ÅMeasure KPIs (Key Performance Indicator) directly

ÅCan compare several variants simultaneously

ÅThe ultimate evaluation technique! 



Online Experiments in Xbox


