

#### Multi-class SVMs

## From Tighter Data-Dependent Generalization Bounds to Novel Algorithms

Marius Kloft

Joint work with Yunwen Lei (CU Hong Kong), Urun Dogan (Microsoft Research), and Alexander Binder (Singapore).

Multi-class SVMs From Tighter Data-Dependent Generalization Bounds to Novel Algorithms

## **Extreme Classification**

Many modern applications involve a huge number of classes.

E.g., image annotation





(Deng, Dong, Socher, Li, Li, and Fei-Fei, 2009)

Still growing datasets

Need for theory and algorithms for **extreme classification** (multi-class classification with huge amount of classes).

# Discrepancy of **Theory** and **Algorithms** in Extreme Classification

- Algorithms for handling huge class sizes
  - (stochastic) dual coordinate ascent (Keerthi et al., 2008; Shalev-Shwartz and Zhang, (to appear)
- Theory not prepared for extreme classification
  - Data-dependent bounds scale at least linearly with the number of classes

(Koltchinskii and Panchenko, 2002; Mohri et al., 2012; Kuznetsov et al., 2014)

#### Questions

- Can we get bounds with mild dependence on #classes?
- What would we learn from such bounds?
  - $\Rightarrow$  Novel algorithms?

Multi-class SVMs From Tighter Data-Dependent Generalization Bounds to Novel Algorithms

## Theory

## **Multi-class Classification**

Given:

• Training data 
$$\underbrace{z_1 = (x_1, y_1), \dots, z_n = (x_n, y_n)}_{\in \mathcal{X} \times \mathcal{Y}} \overset{\text{i.i.d.}}{\sim} P$$

$$\boldsymbol{\mathcal{Y}} := \{1, 2, \dots, \mathbf{C}\}$$

c = number of classes



Multi-class SVMs From Tighter Data-Dependent Generalization Bounds to Novel Algorithms

## Formal Problem Setting

Aim:

- Define a hypothesis class *H* of functions  $h = (h_1, \ldots, h_c)$
- Find an  $h \in H$  that "predicts well" via

 $\hat{y} := \boxed{\arg \max}_{y \in \mathcal{Y}} h_y(x)$ 

#### Multi-class SVMs:

- $\blacktriangleright h_y(x) = \langle \mathbf{w}_y, \phi(x) \rangle$
- Introduce notion of the (multi-class) margin

$$\rho_h(x,y) := h_y(x) - \max_{y':y' \neq y} h_{y'}(x)$$

the larger the margin, the better

**Want**: large expected margin  $\mathbb{E}\rho_h(X, Y)$ .

## **Types of Generalization bounds** for Multi-class Classification

#### Data-independent bounds

- based on covering numbers
   (Guermeur, 2002; Zhang, 2004a,b; Hill and Doucet, 2007)
- conservative
  - unable to adapt to data

#### Data-dependent bounds

#### based on Rademacher complexity (Koltchinskii and Panchenko, 2002; Mohri et al., 2012; Cortes et al., 2013; Kuznetsov et al., 2014)

#### + tighter

- able to capture the real data
- computable from the data

Multi-class SVMs From Tighter Data-Dependent Generalization Bounds to Novel Algorithms

#### 7

## Rademacher & Gaussian Complexity

#### Definition

- Let σ<sub>1</sub>,..., σ<sub>n</sub> be independent Rademacher variables (taking only values ±1, with equal probability).
- The Rademacher complexity (RC) is defined as

$$\mathfrak{R}(H) := \mathbb{E}_{\sigma} \left[ \sup_{h \in H} \frac{1}{n} \sum_{i=1}^{n} \sigma_{i} h(z_{i}) \right]$$

#### Definition

- Let  $g_1, \ldots, g_n \sim N(0, 1)$ .
- The Gaussian complexity (GC) is defined as

$$\mathfrak{G}(H) = \mathbb{E}_{\boldsymbol{g}} \Big[ \sup_{h \in H} \frac{1}{n} \sum_{i=1}^{n} \boxed{\boldsymbol{g}_i} h(z_i) \Big]$$

Interpretation: RC and GC reflect the ability of the hypothesis class to correlate with random noise.

## **Existing Data-Dependent Analysis**

The key step is estimating  $\Re(\{\rho_h : h \in H\})$  induced from the **margin operator**  $\rho_h$  and class *H*.

Existing bounds build on the structural result:

$$\Re(\max\{h_1,\ldots,h_c\}:h_j\in H_j, j=1,\ldots,c)\leq \left|\sum_{j=1}^c \Re(H_j)\right|$$
(1)

The correlation among class-wise components is ignored.

Best known dependence on the number of classes:

- quadratic dependence Koltchinskii and Panchenko (2002); Mohri et al. (2012); Cortes et al. (2013)
- linear dependence

Kuznetsov et al. (2014)

Can we do better?

Multi-class SVMs From Tighter Data-Dependent Generalization Bounds to Novel Algorithms

## A New Structural Lemma on Gaussian Complexities

#### We consider Gaussian complexity.

- *H* is a vector-valued function class,  $g_{11}, \ldots, g_{nc} \sim N(0, 1)$
- We show:

$$\mathfrak{G}\left(\{\max\{h_1,\ldots,h_c\}:h=(h_1,\ldots,h_c)\in H\}\right)\leq \left[\frac{1}{n}\mathbb{E}_{g}\sup_{h=(h_1,\ldots,h_c)\in H}\sum_{i=1}^{n}\sum_{j=1}^{c}g_{ij}h_j(x_i)\right].$$
 (2)

Core idea: Comparison inequality on GPs: (Slepian, 1962)

$$\mathfrak{X}_{h} := \sum_{i=1}^{n} g_{i} \max\{h_{1}(x_{i}), \dots, h_{c}(x_{i})\}, \mathfrak{Y}_{h} := \sum_{i=1}^{n} \sum_{j=1}^{c} g_{ij}h_{j}(x_{i}), \forall h \in H.$$
$$\mathbb{E}[(\mathfrak{X}_{\theta} - \mathfrak{X}_{\overline{\theta}})^{2}] \leq \mathbb{E}[(\mathfrak{Y}_{\theta} - \mathfrak{Y}_{\overline{\theta}})^{2}] \Longrightarrow \mathbb{E}[\sup_{\theta \in \Theta} \mathfrak{X}_{\theta}] \leq \mathbb{E}[\sup_{\theta \in \Theta} \mathfrak{Y}_{\theta}].$$
Eq. (2) preserves the coupling among class-wise components!

## Example on Comparison of the Structural Lemma

Consider

$$H := \{ (x_1, x_2) \to (h_1, h_2)(x_1, x_2) = (w_1 x_1, w_2 x_2) : \| (w_1, w_2) \|_2 \le 1 \}$$

• For the function class  $\{\max\{h_1, h_2\} : h = (h_1, h_2) \in H\},\$ 



Estimating Multi-class Gaussian Complexity

Consider a vector-valued function class defined by

$$H := \{h^{\mathbf{w}} = (\langle \mathbf{w}_1, \phi(x) \rangle, \dots, \langle \mathbf{w}_c, \phi(x) \rangle) : f(\mathbf{w}) \leq \Lambda\},\$$

where *f* is  $\beta$ -strongly convex w.r.t.  $\|\cdot\|$ 

•  $f(\alpha x + (1 - \alpha)y) \le \alpha f(x) + (1 - \alpha)f(y) - \frac{\beta}{2}\alpha(1 - \alpha)\|x - y\|^2.$ 

Theorem

$$\frac{1}{n}\mathbb{E}_{\boldsymbol{g}}\sup_{h^{\mathbf{w}}\in H}\sum_{i=1}^{n}\sum_{j=1}^{c}g_{ij}h_{j}^{\mathbf{w}}(x_{i})\leq\frac{1}{n}\sqrt{\frac{2\pi\Lambda}{\beta}\mathbb{E}_{\boldsymbol{g}}\sum_{i=1}^{n}\left\|\left(g_{ij}\phi(x_{i})\right)_{j=1}^{c}\right\|_{*}^{2}},\quad(3)$$

where  $\|\cdot\|_*$  is the **dual norm** of  $\|\cdot\|$ .

11

## Features of the complexity bound

- Applies to a general function class defined through a strongly-convex regularizer f
- Class-wise components  $h_1, \ldots, h_c$  are correlated through the term  $\left\| \left( g_{ij} \phi(x_i) \right)_{i=1}^c \right\|_*^2$
- Consider class  $H_{p,\Lambda} := \{h^{\mathbf{w}} : \|\mathbf{w}\|_{2,p} \leq \Lambda\}, (\frac{1}{p} + \frac{1}{p^*} = 1);$  then:

$$\begin{aligned} \frac{1}{n} \mathbb{E}_{g} \sup_{h^{\mathbf{w}} \in H_{p,\Lambda}} \sum_{i=1}^{n} \sum_{j=1}^{c} g_{ij} h_{j}^{\mathbf{w}}(x_{i}) &\leq \frac{\Lambda}{n} \sqrt{\sum_{i=1}^{n} k(x_{i}, x_{i})} \times \\ \begin{cases} \sqrt{e} (4 \log c)^{1 + \frac{1}{2 \log c}}, & \text{if } p^{*} \geq 2 \log c, \\ (2p^{*})^{1 + \frac{1}{p^{*}}} \boxed{c^{\frac{1}{p^{*}}}}, & \text{otherwise.} \end{cases} \end{aligned}$$

The dependence is **sublinear** for  $1 \le p \le 2$ , and even **logarithmic** when *p* approaches to 1!

Multi-class SVMs From Tighter Data-Dependent Generalization Bounds to Novel Algorithms

## **Algorithms**

### ℓ<sub>p</sub>-norm Multi-class SVM

Motivated by the **mild dependence** on c as  $p \rightarrow 1$ , we consider

( $\ell_p$ -norm) Multi-class SVM,  $1 \le p \le 2$ 

$$\min_{\mathbf{w}} \frac{1}{2} \left[ \sum_{j=1}^{c} \|\mathbf{w}_{j}\|_{2}^{p} \right]^{\frac{2}{p}} + C \sum_{i=1}^{n} (1 - t_{i})_{+},$$
s.t.  $t_{i} = \langle \mathbf{w}_{y_{i}}, \phi(x_{i}) \rangle - \max_{y:y \neq y_{i}} \langle \mathbf{w}_{y}, \phi(x_{i}) \rangle,$ 
(P)

**Dual Problem** 

$$\sup_{\boldsymbol{\alpha}\in\mathbb{R}^{n\times c}} -\frac{1}{2} \Big[ \sum_{j=1}^{c} \|\sum_{i=1}^{n} \alpha_{ij}\phi(x_i)\|_{2}^{\frac{p}{p-1}} \Big]^{\frac{2(p-1)}{p}} + \sum_{i=1}^{n} \alpha_{iy_i}$$
(D)  
s.t.  $\alpha_i \leq \boldsymbol{e}_{y_i} \cdot C \wedge \alpha_i \cdot \mathbf{1} = 0, \quad \forall i = 1, \dots, n.$ 

(D) is not quadratic if  $p \neq 2$ ; how to optimize?

Multi-class SVMs From Tighter Data-Dependent Generalization Bounds to Novel Algorithms

We introduce class weights  $\beta_1, \ldots, \beta_c$  to get quadratic dual

$$\min_{\boldsymbol{\beta}} \quad \frac{1}{2} \sum_{j=1}^{c} \frac{\|\mathbf{w}_{j}\|^{2}}{\beta_{j}} + \lambda \|\boldsymbol{\beta}\|_{p}^{p} \quad \text{has optimum for } \beta_{j} \propto \sqrt[p+1]{\|\mathbf{w}_{j}\|^{2}}.$$

**Equivalent Problem** 

$$\begin{array}{l} \min \limits_{\mathbf{w},\boldsymbol{\beta}} \sum_{j=1}^{c} \frac{\|\mathbf{w}_{j}\|_{2}^{2}}{2\beta_{j}} + C \sum_{i=1}^{n} (1-t_{i})_{+} \\ \text{s.t. } t_{i} \leq \langle \mathbf{w}_{y_{i}}, \phi(x_{i}) \rangle - \langle \mathbf{w}_{y}, \phi(x_{i}) \rangle, \quad y \neq y_{i}, i = 1, \dots, n, \\ \|\boldsymbol{\beta}\|_{\bar{p}} \leq 1, \bar{p} = p(2-p)^{-1}, \beta_{j} \geq 0. \end{array}$$

$$(\mathsf{E})$$

Alternating optimization w.r.t.  $\beta$  and to w

15

## **Empirical Results**

| Dataset     | # Classes | # Training Examples | # Test Examples | # Attributes |
|-------------|-----------|---------------------|-----------------|--------------|
| Sector      | 105       | 6,412               | 3,207           | 55, 197      |
| News 20     | 20        | 15,935              | 3,993           | 62,060       |
| Rcv1        | 53        | 15,564              | 518, 571        | 47,236       |
| Birds 50    | 200       | 9,958               | 1,830           | 4,096        |
| Caltech 256 | 256       | 12,800              | 16,980          | 4,096        |

#### Description of datasets used in the experiments:

#### **Empirical Results:**

| Method / Dataset      | Sector         | News 20        | Rcv1           | Birds 50       | Caltech 256    |
|-----------------------|----------------|----------------|----------------|----------------|----------------|
| $\ell_p$ -norm MC-SVM | $94.2 \pm 0.3$ | $86.2 \pm 0.1$ | $85.7 \pm 0.7$ | $27.9 \pm 0.2$ | $56.0 \pm 1.2$ |
| Crammer & Singer      | 93.9±0.3       | 85.1±0.3       | 85.2±0.3       | $26.3 \pm 0.3$ | $55.0 \pm 1.1$ |

Proposed  $\ell_p$ -norm MC-SVM consistently better on benchmark datasets.

Multi-class SVMs From Tighter Data-Dependent Generalization Bounds to Novel Algorithms

17

## **Future Directions**

**Theory**: A data-dependent bound **independent** of the class size?

⇒ Need more powerful structural result on Gaussian complexity for functions induced by maximum operator.

• Might be worth to look into  $\ell_{\infty}$ -norm covering numbers.

Algorithms: New models & efficient solvers

- Novel models motivated by theory
  - top-k MC-SVM (Lapin et al., 2015), nuclear norm regularization, ...
- **Scalable** algorithms
- Analyze p > 2 regime
- Extensions to multi-label learning

## References I

- C. Cortes, M. Mohri, and A. Rostamizadeh. Multi-class classification with maximum margin multiple kernel. In ICML-13, pages 46–54, 2013.
- J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. Imagenet: A large-scale hierarchical image database. In Computer Vision and Pattern Recognition, 2009. CVPR 2009. IEEE Conference on, pages 248–255. IEEE, 2009.
- Y. Guermeur. Combining discriminant models with new multi-class svms. **Pattern Analysis & Applications**, 5(2): 168–179, 2002.
- S. I. Hill and A. Doucet. A framework for kernel-based multi-category classification. J. Artif. Intell. Res.(JAIR), 30: 525–564, 2007.
- S. S. Keerthi, S. Sundararajan, K.-W. Chang, C.-J. Hsieh, and C.-J. Lin. A sequential dual method for large scale multi-class linear svms. In 14th ACM SIGKDD, pages 408–416. ACM, 2008.
- V. Koltchinskii and D. Panchenko. Empirical margin distributions and bounding the generalization error of combined classifiers. Annals of Statistics, pages 1–50, 2002.
- V. Kuznetsov, M. Mohri, and U. Syed. Multi-class deep boosting. In Advances in Neural Information Processing Systems, pages 2501–2509, 2014.
- M. Lapin, M. Hein, and B. Schiele. Top-k multiclass SVM. CoRR, abs/1511.06683, 2015. URL http://arxiv.org/abs/1511.06683.
- M. Ledoux and M. Talagrand. Probability in Banach Spaces: isoperimetry and processes, volume 23. Springer, Berlin, 1991.
- M. Mohri, A. Rostamizadeh, and A. Talwalkar. Foundations of machine learning. MIT press, 2012.
- S. Shalev-Shwartz and T. Zhang. Accelerated proximal stochastic dual coordinate ascent for regularized loss minimization. Mathematical Programming SERIES A and B, 5, (to appear).
- D. Slepian. The one-sided barrier problem for gaussian noise. **Bell System Technical Journal**, 41(2):463–501, 1962.
- T. Zhang. Class-size independent generalization analsysis of some discriminative multi-category classification. In Advances in Neural Information Processing Systems, pages 1625–1632, 2004a.
- T. Zhang. Statistical analysis of some multi-category large margin classification methods. The Journal of Machine Learning Research, 5:1225–1251, 2004b.

Multi-class SVMs From Tighter Data-Dependent Generalization Bounds to Novel Algorithms