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Extreme Classification

Many modern applications involve a huge number of classes.

I E.g., image annotation

(Deng, Dong, Socher, Li, Li, and Fei-Fei, 2009)

I Still growing datasets

Need for theory and algorithms for extreme classification
(multi-class classification with huge amount of classes).
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Discrepancy of Theory and Algorithms in Extreme
Classification

I Algorithms for handling huge class sizes
I (stochastic) dual coordinate ascent (Keerthi et al., 2008;

Shalev-Shwartz and Zhang, (to appear)

I Theory not prepared for extreme classification
I Data-dependent bounds scale at least linearly with the

number of classes
(Koltchinskii and Panchenko, 2002; Mohri et al., 2012; Kuznetsov et al.,
2014)

Questions
I Can we get bounds with mild dependence on #classes?
I What would we learn from such bounds?
⇒ Novel algorithms?
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Theory
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Multi-class Classification
Given:

I Training data z1 = (x1, y1), . . . , zn = (xn, yn)︸ ︷︷ ︸
∈X×Y

i.i.d.∼ P

I Y := {1, 2, . . . ,c}
I c = number of classes

aeroplane bicycle bird boat bottle

bus car cat chair cow

diningtable dog horse motorbike person

pottedplant sheep sofa train tvmonitor

Multi-class SVMs From Tighter Data-Dependent Generalization Bounds to Novel Algorithms 5

Formal Problem Setting

Aim:
I Define a hypothesis class H of functions h = (h1, . . . , hc)

I Find an h ∈ H that “predicts well” via

ŷ := arg max
y∈Y

hy(x)

Multi-class SVMs:
I hy(x) = 〈wy, φ(x)〉
I Introduce notion of the (multi-class) margin

ρh(x, y) := hy(x)− max
y′:y′ 6=y

hy′(x)

I the larger the margin, the better

Want: large expected margin Eρh(X,Y).
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Types of Generalization bounds for Multi-class
Classification

Data-independent bounds
I based on covering numbers

(Guermeur, 2002; Zhang, 2004a,b; Hill and Doucet, 2007)

- conservative
I unable to adapt to data

Data-dependent bounds
I based on Rademacher complexity

(Koltchinskii and Panchenko, 2002; Mohri et al., 2012; Cortes et al., 2013;

Kuznetsov et al., 2014)

+ tighter
I able to capture the real data
I computable from the data
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Rademacher & Gaussian Complexity
Definition

I Let σ1, . . . , σn be independent Rademacher variables
(taking only values ±1, with equal probability).

I The Rademacher complexity (RC) is defined as

R(H) := Eσ

[
sup
h∈H

1
n

n∑
i=1

σi h(zi)
]

Definition
I Let g1, . . . , gn ∼ N(0, 1).
I The Gaussian complexity (GC) is defined as

G(H) = Eg
[

sup
h∈H

1
n

n∑
i=1

gi h(zi)
]

Interpretation: RC and GC reflect the ability of the hypothesis
class to correlate with random noise.

Theorem ((Ledoux and Talagrand, 1991))

R(H) ≤
√
π

2
G(H) ≤ 3

√
π

2

√
log nR(H).
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Existing Data-Dependent Analysis

The key step is estimating R({ρh : h ∈ H}) induced from the
margin operator ρh and class H.

Existing bounds build on the structural result:

R(max{h1, . . . , hc} : hj ∈ Hj, j = 1, . . . , c) ≤
c∑

j=1

R(Hj) (1)

The correlation among class-wise components is ignored.

Best known dependence on the number of classes:

I quadratic dependence Koltchinskii and Panchenko (2002); Mohri et al.

(2012); Cortes et al. (2013)

I linear dependence Kuznetsov et al. (2014)

Can we do better?
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A New Structural Lemma on Gaussian Complexities
We consider Gaussian complexity.

I H is a vector-valued function class, g11, . . . , gnc ∼ N(0, 1)
I We show:

G
(
{max{h1, . . . , hc} : h = (h1, . . . , hc) ∈ H}

)
≤

1
n
Eg sup

h=(h1,...,hc)∈H

n∑
i=1

c∑
j=1

gijhj(xi) . (2)

Core idea: Comparison inequality on GPs: (Slepian, 1962)

Xh :=
n∑

i=1

gimax{h1(xi), . . . , hc(xi)},Yh :=
n∑

i=1

c∑
j=1

gijhj(xi),∀h ∈ H.

E[(Xθ − Xθ̄)
2] ≤ E[(Yθ −Yθ̄)

2] =⇒ E[sup
θ∈Θ

Xθ] ≤ E[sup
θ∈Θ

Yθ].

Eq. (2) preserves the coupling among class-wise components!
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Example on Comparison of the Structural Lemma

I Consider

H := {(x1, x2)→ (h1, h2)(x1, x2) = (w1x1,w2x2) : ‖(w1,w2)‖2 ≤ 1}

I For the function class {max{h1, h2} : h = (h1, h2) ∈ H},
sup

(h1,h2)∈H

∑n
i=1 σih1(xi) +

sup
(h1,h2)∈H

∑n
i=1 σih2(xi)

sup
(h1,h2)∈H

n∑
i=1

[gi1h1(xi) + gi2h2(xi)]

Preserving the coupling means supremum in a smaller space!
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Estimating Multi-class Gaussian Complexity

I Consider a vector-valued function class defined by

H := {hw = (〈w1, φ(x)〉, . . . , 〈wc, φ(x)〉) : f (w) ≤ Λ},

where f is β-strongly convex w.r.t. ‖ · ‖
I f (αx + (1− α)y) ≤ αf (x) + (1− α)f (y)− β

2α(1− α)‖x− y‖2.

Theorem

1
n
Eg sup

hw∈H

n∑
i=1

c∑
j=1

gijhw
j (xi) ≤

1
n

√√√√2πΛ

β
Eg

n∑
i=1

∥∥∥(gijφ(xi)
)c

j=1

∥∥∥2

∗
, (3)

where ‖ · ‖∗ is the dual norm of ‖ · ‖.
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Features of the complexity bound
I Applies to a general function class defined through a

strongly-convex regularizer f
I Class-wise components h1, . . . , hc are correlated through

the term
∥∥∥(gijφ(xi)

)c

j=1

∥∥∥2

∗

I Consider class Hp,Λ := {hw : ‖w‖2,p ≤ Λ}, (1
p+ 1

p∗ =1); then:

1
n
Eg sup

hw∈Hp,Λ

n∑
i=1

c∑
j=1

gijhw
j (xi) ≤

Λ

n

√√√√ n∑
i=1

k(xi, xi)×
√

e(4 log c)
1+ 1

2 log c , if p∗ ≥ 2 log c,(
2p∗
)1+ 1

p∗ c
1

p∗ , otherwise.

The dependence is sublinear for 1 ≤ p ≤ 2, and even
logarithmic when p approaches to 1!

Multi-class SVMs From Tighter Data-Dependent Generalization Bounds to Novel Algorithms 13

Algorithms
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`p-norm Multi-class SVM
Motivated by the mild dependence on c as p→ 1, we consider

(`p-norm) Multi-class SVM, 1 ≤ p ≤ 2

min
w

1
2

[ c∑
j=1

‖wj‖p
2

] 2
p

+ C
n∑

i=1

(1− ti)+,

s.t. ti = 〈wyi , φ(xi)〉 − max
y:y 6=yi
〈wy, φ(xi)〉,

(P)

Dual Problem

sup
α∈Rn×c

− 1
2

[ c∑
j=1

∥∥ n∑
i=1

αijφ(xi)
∥∥ p

p−1
2

] 2(p−1)
p

+

n∑
i=1

αiyi

s.t. αi ≤ eyi · C ∧ αi · 1 = 0, ∀i = 1, . . . , n.

(D)

(D) is not quadratic if p 6= 2; how to optimize?
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Equivalent Formulation

We introduce class weights β1, . . . , βc to get quadratic dual

minβ 1
2
∑c

j=1
‖wj‖2

βj
+ λ ‖β‖p

p has optimum for βj ∝ p+1
√
‖wj‖2.

Equivalent Problem

min
w , β

c∑
j=1

‖wj‖2
2

2βj
+ C

n∑
i=1

(1− ti)+

s.t. ti ≤ 〈wyi , φ(xi)〉 − 〈wy, φ(xi)〉, y 6= yi, i = 1, . . . , n,

‖β‖p̄ ≤ 1, p̄ = p(2− p)−1, βj ≥ 0.

(E)

Alternating optimization w.r.t. β and to w
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Empirical Results

Description of datasets used in the experiments:
Dataset # Classes # Training Examples # Test Examples # Attributes
Sector 105 6, 412 3, 207 55, 197

News 20 20 15, 935 3, 993 62, 060
Rcv1 53 15, 564 518, 571 47, 236

Birds 50 200 9, 958 1, 830 4, 096
Caltech 256 256 12, 800 16, 980 4, 096

Empirical Results:
Method / Dataset Sector News 20 Rcv1 Birds 50 Caltech 256
`p-norm MC-SVM 94.2±0.3 86.2±0.1 85.7±0.7 27.9±0.2 56.0±1.2
Crammer & Singer 93.9±0.3 85.1±0.3 85.2±0.3 26.3±0.3 55.0±1.1

Proposed `p-norm MC-SVM consistently better on benchmark
datasets.
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Future Directions

Theory: A data-dependent bound independent of the class
size?

⇒ Need more powerful structural result on Gaussian
complexity for functions induced by maximum operator.

I Might be worth to look into `∞-norm covering numbers.

Algorithms: New models & efficient solvers
I Novel models motivated by theory

I top-k MC-SVM (Lapin et al., 2015), nuclear norm
regularization, ...

I Scalable algorithms
I Analyze p > 2 regime
I Extensions to multi-label learning
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