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The typical machine learning problem
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Evaluation is easy:  just measure Вὰon the test set.



Thank You

Questions?



Problem: for real problems, we need to decide 
what labels ώto look at, and
what loss function ὒẗȟẗto use.



But is this really a serious problem?

How hard can it be?

E.g. Netflix:
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Fixing the labels and loss fixes the problem

¢ƘŜ άbŜǘŦƭƛȄ ǇǊƻōƭŜƳέ ŀǘ bLt{ ƛǎΥ
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¢ƘŜ ǳǎŜǊΩǎ bŜǘŦƭƛȄproblem is:



Really?



Where are the stars?





Does our formulation of the problem  

really help users find things to watch?



Does predicting ratings help users find things 
to watch?



Predicting Ratings Predicting Usage
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Predicting Ratings Predicting Usage
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Predicting Ratings Predicting Usage
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Lesson:
¢ƘŜ άǎǘŀƴŘŀǊŘΣέ άƎƛǾŜƴΣέ ƻǊ άŎƻƳƳƻƴƭȅ ǳǎŜŘέ ƭŀōŜƭǎ ŀƴŘ 
loss functions may tell us very little about how useful 
the system is.



If not RMSE, what?



Precion/Recall?



AUC?



Mean AvgPrecision?



Precison@16?



A better Netflix evaluation protocol

1. Log usage (not just ratings)

2. Train recommender on log data from before yesterday.

3. wŜŎƻƳƳŜƴŘ ƛǘŜƳǎ ŦƻǊ ȅŜǎǘŜǊŘŀȅΩǎ ǳǎŜǊǎΦ

4. {ŎƻǊŜ ŀƎŀƛƴǎǘ ȅŜǎǘŜǊŘŀȅΩǎ ŀŎǘǳŀƭ ǳǎŀƎŜ ŘŀǘŀΥ

ActuallyUsed Actually Unused

Recommended TruePositive False Positive

Not Recommended False Negative True Negative
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Problem #1
hǳǊ Řŀǘŀ ƛǎƴΩǘ ŀƴ i.i.d. draw ςƛǘΩǎ ŎƻƭƭŜŎǘŜŘ ŦǊƻƳ ŀ ǊŜŀƭ 
running system.



Really?



Really?
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Problem #2
aŜŀǎǳǊƛƴƎ ǇǊŜŘƛŎǘƛƻƴ ŀŎŎǳǊŀŎȅ ŘƻŜǎƴΩǘ ǘŜƭƭ ǳǎ Ƙƻǿ ǘƘŜ 
system will  influence user behavior.








